Обезвоживание кожи лица. Как можно сохранить влагу в почве, приемы, методы, рекомендации Защитить ее от испарений влаги

Одним из главнейших факторов водного режима почв является процесс испарения влаги. Испарение воды из почвы протекает при любой температуре, возрастая с увеличением температуры и сухости воздуха. Испарение воды из почвы происходит преимущественно с ее поверхности, однако в почвах, имеющих влажность меньше максимальной гигроскопичности, испарение происходит и внутри почвенных и грунтовых горизонтов. Скорость внутрипочвенного испарения воды значительно меньшая, чем с поверхности почв. Глубокая трещиноватость почв способствует усилению внутрипочвенного испарения.
Неровности рельефа и поверхности почвы способствуют также увеличению расхода влаги на испарение. Удаление парообразной воды под влиянием ветра увеличивает скорость испарения. Скорость испарения всегда тем большая, чем выше влажность почвы. Поэтому в условиях степи, полупустынь и пустынь, если поддерживается высокая влажность почв (путем орошения или от грунтовых вод), величина фактического испарения достигает высоких величин:


В орошаемых почвах поливы, поддерживая высокую влажность, наряду с близкими к поверхности грунтовыми водами способствуют чрезвычайно большому расходу почвенной воды на испарение. Суммарное испарение (включая транспирацию) почвенно-грунтовых вод в орошаемых районах Средней Азии достигает 15-20 тыс. м3/га (Ферганская долина, долина р. Вахш). Наибольший расход воды на испарение имеет место в первые часы и дни после полива. В июле и августе непосредственно после полива может испариться 70-100 м3/га в день.
Если принять испарение воды в 1-й день после полива за 100%, то уменьшение интенсивности испарения выразится следующим рядом цифр:

Испарение воды из почв в земледелии является процессом, в высшей степени отрицательным, так как создает недостаток влаги для развития сельскохозяйственных растений, вызывает их угнетение и даже гибель. В условиях орошаемых почв испарение влаги из почвы приводит к бесполезной трате воды, на получение и доставку которой к полю затрачено много средств и усилий. Потери воды на испарение из почвы заставляют увеличивать число поливов и приводят к дополнительной загрузке ирригационной системы и рабочего персонала. Самое же главное заключается в том, что господство процессов испарения сопровождается накоплением избытка легкорастворимых солей в пахотном горизонте, образованием засоленных почв и потерей ими плодородия. Поэтому одной из основных задач земледелия является систематическое применение мероприятий по уменьшению испарения воды из почвы.
Приемы уменьшения испарения влаги из почвы. Создание ветрозащитных лесных полос на полях, рыхление почвы и увеличение в ней некапиллярной скважности и агрегированности являются древнейшими способами борьбы с бесполезным испарением влаги. Мульчирование почвы рыхлым материалом, отражающим свет и тепло (белым), или не проницаемым для водяных паров (бумажным, пластмассовым) покровом способствует уменьшению испарения и сохранению в ней влаги.
В этом же направлении действуют гидрофобные добавки и поверхностно-активные вещества, нарушающие капиллярно-менисковые системы в почве. Все эти приемы уменьшения процессов испарения влаги из почв все больше внедряются в практику современного земледелия. Этими способами возможно сохранить в почвах до 50-100 мм физиологически доступной воды; а это значит, что больший урожай растений можно получать в степях и лесостепях без строительства дорогих оросительных сооружений. Столь же важно бороться с испарением влаги и в орошаемых почвах.
Борьбу с бесполезной тратой воды на испарение необходимо начинать уже при производстве поливов. Это должно достигаться максимально возможным уменьшением числа поливов и уменьшением их продолжительности. Уменьшение продолжительности поливов возможно в том случае, если агрофизические свойства пахотного и подпахотного горизонтов почвы достаточно благоприятны, т. е. почвы обладают водоустойчивой структурой, повышенной некапиллярной скважностью и удовлетворительной водопроницаемостью. Структурность почвы и повышенная некапиллярная скважность будут способствовать уменьшению числа поливов.
Исключительно большое значение в борьбе с испарением имеет своевременное и тщательное рыхление почвы после полива, что может быть иллюстрировано данными Е. Петрова (табл. 15).


В борьбе с испарением воды из почвы велика также роль растительного покрова. Под пологом люцерны и хлопчатника температура воздуха обычно на 1-3° ниже, чем на открытой пашне. Влажность воздуха в приземном слое сильно повышена, а в некоторых случаях близка к точке росы (95-100%). Благодаря этому при хорошем травостое люцерны или в случае густого покрова хорошо развитого хлопчатника непосредственное испарение влаги с поверхности почвы значительно снижено. Этому способствует также и притеняющее влияние растительного покрова.
Еще больше косвенная роль растительного покрова в уменьшении процессов испарения влаги с поверхности почвы. Сельскохозяйственные растения и древесные насаждения транспирируют большое количество воды - 10-15 тыс. м3/га. Вследствие этого под их пологом обычно влажность почвы значительно уменьшается, уровень грунтовых вод снижается на 0,5-1 м, и транспорт капиллярной воды к поверхности замедляется. В итоге процесс испарения влаги почвой замещается биологическим испарением - транспирацией почвенной воды через листву растений.
В числе планомерных мероприятий по уменьшению испарения почвенной влаги с поверхности почвы обязательно должны быть многолетние травы в севообороте (улучшение структуры, притенение, ослабление испарения, снижение уровня грунтовых вод) и древесные полосные насаждения вдоль ирригационных каналов, дорог и на усадьбах (ветрозащитная роль, снятие капиллярной воды, биологическое снижение уровня грунтовых вод).

Испарение влаги с водных поверхностей в условиях крытых аквапарков.

Генеральный директор

«Стройинженерсервис»

Главный специалист

«Стройинженерсервис»

Профессор кафедры ВИТУ

докт. техн. наук

В условиях крытых аквапарков различные бассейны и развлекательные водные аттракционы являются основными источниками значительных влагопоступлений, которые необходимо учитывать при проектировании их систем вентиляции и кондиционирования воздуха. Недостаточный учет влагопоступлений от указанных источников может привести в период эксплуатации крытых аквапарков к постоянному возникновению конденсации влаги из воздуха на внутренних поверхностях различных строительных конструкций и к несоблюдению допустимого температурно-влажностного режима воздушной среды в зоне пребывания купающихся. Наш опыт проектирования систем вентиляции и кондиционирования воздуха крытых аквапарков показал, что для оценки их влагопоступлений требуется проведение тщательного анализа:

– технологических режимов использования бассейнов и водных аттракционов;

В этой связи следует отметить, что наибольшие затруднения возникли с установлением (обоснованным выбором) расчетных зависимостей для определения влагопоступлений с водных поверхностей.

В настоящее время имеется множество формул, рекомендуемых для оценки испарения влаги, которые основаны на результатах лабораторных экспериментов. Возникло сомнение, что лабораторные эксперименты учитывают всю полноту условий, при которых происходит испарение влаги с водных поверхностей бассейнов и аттракционов в условиях крытых аквапарков. Поэтому было решено проанализировать расчетные зависимости для определения интенсивности испарения влаги с водных поверхностей, рекомендуемые различными нормативными документами, существующими в отечественной и зарубежной практике. При проведении анализа особое внимание было обращено на условия получения и возможные области применения рекомендуемых расчетных зависимостей для оценки испарения с водных поверхностей.

В отечественной практике для расчета количества влаги, испаряющейся с открытой водной поверхности, широкое применение получила зависимость, предложенная сушильной лабораторией Всесоюзного Теплотехнического Института (г. Москва), которая базируется на результатах обширных опытов, проведенных при следующих условиях:

– температура воздуха – t=40÷225 0С;

– скорость движения воздуха – υ=1÷7,5 м/с.

В опытах обеспечивались условия испарения близкие к адиабатическому процессу. Разработанная при этом зависимость была включена в «Указания по проектированию отопления и вентиляции» (СН 7-57), а затем в «Справочник проектировщика. Вентиляция и кондиционирование воздуха» кн. 1, изд. 1992 г. (СПВ) в следующем виде:

G=7,4(аt+0.017∙υ)∙(Pн-Рв)∙∙F, (1)

где G – количество испаряющейся влаги с открытой водной поверхности площадью F (м2), кг/ч;

υ – относительная скорость движения воздуха над водной поверхностью, м/с. Для залов бассейнов, согласно СНиП 2.08.02-89*, можно рекомендовать не более 0,2 м/с;

аt – коэффициент, зависящий от температуры воды в бассейне (0,022÷0,028 при tводы=28-40 0С);

Pв – парциальное давление водяного пара в воздухе рабочей зоны помещения, кПа;

Pн – давление насыщенного водяного пара в воздухе при температуре, равной температуре воды, кПа;

Как отмечает проф. в книге «Вентиляция, увлажнение и отопление на текстильных фабриках» (изд. 1953г.) формула (1) представляет собой модифицированную формулу Дальтона, которая имеет следующий вид:

G= , (2)

где С – коэффициент испарения (0,86 – при сильном движении воздуха; 0,71 – при умеренном движении воздуха; 0,55 – при спокойном состоянии воздуха).

Эта зависимость была получена Дальтоном в результате проведения им многочисленных опытов по испарению воды, которая подогревалась в круглых чашах ø8,25 и ø15,24 см на жаровнях до различной температуры. При этом в опытах скорость движения воздуха над поверхностью испарения изменялась произвольно. Поэтому в формуле Дальтона не указывается количественные характеристики скорости движения воздуха над поверхностью испарения. В книге «Вентиляция» (изд. 1959 г.) проф. дана оценка возможных скоростей движения воздуха в опытах Дальтона:

– при сильном движении воздуха скорость воздуха могла составлять 1,57 м/с;

– при умеренном движении воздуха - 1,13 м/с;

– при спокойном состоянии воздуха - 0,58 м/с.

На основании этих данных было установлено значение коэффициента испарения С=0,4 при скорости движения воздуха над поверхностью испарения равной 0,2 м/с.

В зарубежной практике для расчета испаряющейся влаги с водной поверхности бассейнов применяются формулы, приведенные в «Руководстве по проектированию» фирмы Dantherm, которые дают возможность учитывать влияние занятости бассейна купающимися и их активности на испарение влаги. В Руководстве отмечается, что в Германии используется для расчета испарения воды с водяной поверхности крытых плавательных бассейнов формула стандарта VDI 2086, разработанная обществом немецких инженеров:

G=ε∙F ∙(Pн-Рв)∙10-3 , (3)

где ε – эмпирический коэффициент испарения воды с водной поверхности бассейна, г/м2∙ч∙мбар, зависящий от подвижности водной поверхности, количества купающихся и их активности.

e=35 – для бассейнов с горками и значительным волнообразованием;

e=28 – при средней подвижности водной поверхности для общественных бассейнов и нормальной активности купающихся (бассейны для отдыха и развлечений);

e=13 – при малоподвижной водной поверхности для небольших плавательных бассейнов с ограниченным количеством купающихся;

e=5,0 – для неподвижной воды в бассейнах;

e=0,5 – закрытая поверхность воды в бассейнах.

Следует отметить, что формула (3) является также модификацией формулы Дальтона, а ее эмпирический коэффициент e отражает влияние на процесс испарения влаги, как скорости движения водной поверхности, так и скорости движения воздуха ввиде относительной скорости движения указанных сред.

В Великобритании для расчета количества испаряющейся влаги с водной поверхности бассейнов, как отмечается в «Руководстве по проектированию» фирмы Dantherm, чаще используются формулы Бязина-Крумме, которые установлены на основе натурных измерений интенсивности испарения влаги, проведенных в действующих бассейнах. Для дневного периода (период использования бассейна) рекомендуется формула Бязина-Крумме в следующем виде:

G= ∙F , (4)

где А – коэффициент занятости бассейна купающихся, зависящий от количества купающихся n (чел) и от площади бассейна F (м2);

DР – разность между давлением водяных паров насыщенного воздуха при температуре воды в бассейне и парциальным давлением водяных паров в воздушной среде бассейна, мбар.

Для ночного периода (в период бездействия бассейна) рекомендуемая формула Бязина-Крумме имеет вид:

G= [-0,059+0,0105∙]∙F (5)

Нами были выполнены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их использования (в дневное время) по формулам (1÷4). При этом были рассмотрены три типа бассейнов и водных аттракционов в зависимости от температуры применяемой воды:

тип 1 – общие бассейны водных аттракционов, tводы=30 0С;

тип 2 – детские бассейны, tводы=35 0С;

тип 3 – бассейны «Джакузи», tводы=40 0С.

В качестве исходных данных в расчетах интенсивности испарения влаги при использовании бассейнов были приняты:

Рн – давление насыщенных водяных паров в воздухе при температуре воды в бассейнах (для бассейнов 1 типа - 37,8 мбар; 2 типа - 42,4 мбар; 3 типа - 73,7 мбар);

Рв – парциальное водяного пара при допустимых параметрах воздуха для всех типов бассейнов. В теплый период года Рв=25,4 мбар (tдоп=30 0С и jдоп=60%), в холодный период года Рв=20,1 мбар (tдоп=29 0С и jдоп=50%).

Таким образом, расчетные значения DР=(Рн- Рв) для различных типов бассейнов составляют для бассейнов 1 типа от 12 до 18 мбар; 2 типа - от 18 до 23 мбар; 3 типа - от 48 до 54 мбар.

При расчетах интенсивности испарения влаги были приняты:

– в формуле (1) среднее значение коэффициента аt=0,025 при скоростях движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с и Рбар=101,3кПа;

– в формуле (2) скорости движения воздуха υ=0,2 ; 0,9 ; 1,5 м/с, а значение Рбар=760 мм. рт. ст.;

– в формуле (3) значения коэффициента e=35 ; 28 и 19;

– в формуле (4) значения занятости бассейнов купающимися: А=0,5 ; 1,0.

Результаты расчетов интенсивности испарения влаги с водных поверхностей по формулам (1÷4) представлены на графиках рис. 1, сопоставление которых позволяет отметить следующее.

Результаты расчетов испарения влаги с водной поверхности по формулам стандартаVDI (при e=35; 28 и 19) и СПВ (при скорости движения воздуха над водной поверхностью υ=1,5; 0,9 и 0,2 м/с) совпадают с результатами расчетов по формуле Дальтона (при скоростях движения воздуха υ=1,5; 0,9 и 0,2 м/с). Это свидетельствует о том, что указанные формулы получены на основании результатов лабораторных опытов, аналогичных опытам Дальтона. Для этих лабораторных опытов характерны следующие условия:

– спокойная гладкая (без волнообразования) водная поверхность испарения, над которой при движении воздуха постоянно существует неразрушаемый пограничный слой воздуха с давлением насыщенного водяного пара при температуре поверхности воды;

– температура поверхности воды ниже температуры основной массы воды на несколько градусов, т. е. процесс тепломассообмена между водной поверхностью и движущемся над ней воздухом «стремиться» к адиабатическому процессу.

Область результатов расчетов интенсивности испарения влаги с водной поверхности по формуле Бязина-Крумме (при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0) «лежит» ниже области результатов интенсивности испарения влаги, установленных по формулам Дальтона, СПВ и стандарта VDI. Это указывает на наличие принципиальных отличий процесса тепломассообмена между водной поверхностью и воздушной средой действующих бассейнов от процесса тепломассообмена при проведении опытов в лабораторных условиях. К этим принципиальным отличиям процесса тепломассообмена в действующих бассейнах и водных аттракционах следует отнести:

– постоянное разрушение водной поверхности (образование волн, брызг и капель), интенсивность которого зависит от занятости бассейнов купающимися и их активности;

– постоянное разрушение над водной поверхностью пограничного слоя воздуха с давлением насыщенного водяного пара при температуре, равной температуре воды в бассейне, которая устанавливается в результате ее перемешивания купающимися. Поэтому процесс тепломассообмена между водной поверхностью и движущимся над ней воздухом в этом случае не «стремится» к адиабатическому процессу, а по существу является некоторым политропическим процессом, «направленным» на температуру воды, устанавливающуюся во всей ее массе в бассейне.

Результаты расчетов интенсивности испарения влаги, полученные по формулам Дальтона, СПВ и стандарта VDI при скорости движения воздуха υ=0,2 м/с, пересекают область результатов расчетов интенсивности испарения влаги, полученных по формуле Бязина-Крумме при значениях коэффициента занятости бассейна купающимися А от 0,5 до 1,0. Характер пересечения этих результатов подчеркивает отмеченное выше принципиальное отличие условий испарения влаги при проведении лабораторных опытов от условий испарения влаги в действующих бассейнах.

Вышеизложенное позволяет сделать вывод о том, что наиболее объективные данные об интенсивности испарения влаги с водных поверхностей бассейнов и аттракционов аквапарков в период их использования можно получить при их оценке по формуле Бязина-Крумме (формула 4). При этом необходимо принимать значения занятости бассейнов купающимися А, исходя из существующих норм их использования. В соответствии с данными «Руководства по проектированию» фирмы Dantherm значения занятости бассейнов купающимися А определяются по формуле:

где 6,0 – нормативное значение площади бассейна, приходящейся на одного купающегося, (м2/чел) при коэффициенте занятости А=1.

Для большинства общественных бассейнов в качестве расчетной величины рекомендуется принимать значение коэффициента занятости бассейна А=0,5.

Нами были произведены расчеты интенсивности испарения влаги с водной поверхности бассейнов в период их бездействия (в ночное время) по формулам (1÷3 и 5). В этом случае исходные данные были приняты те же, что и для периода использования бассейнов. При этом при в расчетах интенсивности испарения влаги были приняты:

– в формуле (1) скорость движения воздуха υ=0;

– в формуле (2) при скорости движения воздуха υ=0 коэффициент испарения С=0,3;

– в формуле (3) значение коэффициента испарения e=5,0.

Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам (1÷3 и5) представлены на графиках рис. 2, сопоставление которых позволяет отметить следующее.

Результаты расчетов интенсивности испарения влаги с водной поверхности по формулам Дальтона и СПВ значительно превосходят результаты расчетов интенсивности испарения влаги с водных поверхностей бассейнов по формулам стандарта VDI и Бязина-Крумме. Это обстоятельство можно объяснить тем, что формулы стандарта VDI и Бязина-Крумме более строго учитывают реальные температурно-влажностные условия взаимодействия воздуха с поверхностью воды в период бездействия бассейнов, тогда как формулы Дальтона и СПВ, основанные на результатах лабораторных опытов, эти условия не отражают. Поэтому для расчетов интенсивности испарения влаги с водных поверхностей бассейнов в период их бездействия следует отдавать предпочтение последним формулам и, прежде всего, формуле Бязина-Крумме.

1. Для крытых аквапарков не могут быть рекомендованы зависимости «Справочника проектировщика. Вентиляция и кондиционирование воздуха» по определению интенсивности испарения влаги с водных поверхностей, основанные на результатах опытов, которые не учитывают условия эксплуатации действующих бассейнов и водных аттракционов.

2. При проектировании систем вентиляции и кондиционирования воздуха крытых аквапарков для определения влагопоступлений от водных поверхностей бассейнов и водных аттракционов (в период их использования и бездействия) целесообразно применять формулы Бязина-Крумме, как наиболее полно отражающие процессы испарения влаги в условиях действующих бассейнов.

В настоящее время компания, штаб-квартира которой расположена в Кливленде (Огайо), является частью международного концерна Degussa Construction Chemicals. Несколько слов об одном из предложений Master Builders.

Как известно, бетон имеет небольшую прочность на растяжение — в среднем около 10% от прочности на сжатие. Портландцемент — наиболее распространенный тип цемента — при схватывании дает усадку, что вызывает появление усадочных трещин.

Можно ли уменьшить количество и размеры трещин, портящих внешний вид бетона и вызывающих его разрушение (в трещину попадает вода, замерзает, и трещина растет)?
Одна из причин образования усадочных трещин — это высокое водоцементное соотношение (в/ц) в бетоне.

Для нормальной гидратации цемента необходимо 25-30% воды от массы цемента, но при таком в/ц бетон будет очень жестким и почти не будет поддаваться укладке. Поэтому для того, чтобы улучшить удобоукладываемость бетона, в него добавляют большее количество воды, чем это необходимо для гидратации цемента.

Тут подстерегает следующая опасность: при большом в/ц наступает расслоение бетона, увеличивается количество пор в бетоне и резко ухудшается качество бетона. Для уменьшения количества воды при сохранении хорошей пластичности в бетон добавляют различные пластифицирующие добавки — пластификаторы и суперпластификаторы. Но все равно в бетоне остается некоторое количество воды, которое не принимает участия в гидратации цемента.

После заливки бетона его открытая поверхность начинает интенсивно испарять влагу. Особенно интенсивно этот процесс идет при высокой температуре, сильном ветре, на солнце. Влага, не принимающая участия в реакции гидратации, увеличивает объем бетона, и при ее испарении из бетона, еще не успевшего набрать прочность, возникают растягивающие напряжения. Бетон еще не успел набрать прочность, поэтому эти напряжения растяжения и формируют усадочные микротрещины.

Для предохранения бетона от усадочных трещин разработано много способов, но наиболее действенной является защита бетона от испарения влаги. Это позволяет сохранить первоначальный объем бетона до набора бетоном прочности, достаточной для сопротивления напряжениям усадки. Для этого при бетонировании вне помещения место заливки закрывают солнце- и ветрозащитными экранами, а после обработки поверхности накрывают полиэтиленовой пленкой.

Очень хорошо защищает бетон во время затирки (когда поверхность бетона остается открытой на длительный срок) обработка его составом Confilm (Masterkure 111).

После затирки в бетон упрочняющих сухих смесей бетон нужно обработать составом для ухода за бетоном Masterkure. Это помогает избегать перерастания микротрещин в макротрещины, хорошо видимые на поверхности.

Confilm помогает производить высококачественные бетонные работы и уменьшает потерю влаги. Так как состав уменьшает испарение, он особенно эффективен в условиях, способствующих высыханию (жесткий бетон и/или высокие температуры, низкая влажность, сильный ветер, работа на солнце, работа в отапливаемых помещениях в холодное время года).

Данный состав уменьшает испарение воды поверхностью бетона на 80% на ветру и на 40% на солнце. Не оказывает влияния на процесс гидратации цемента. Прочность бетона (начальная и конечная), износостойкость и срок службы не только не ухудшаются, но благодаря контролю влажности бетона улучшаются.

Владимир ДАНИЛОВ

А. Марголина, Е. Эрнандес. «Новая косметология».

Увлажняющие кремы - волшебная палочка косметолога.

От содержания влаги в коже зависит многое – её эластичность, упругость, даже цвет. Одним лишь увлажнением кожи можно добиться полного разглаживания мелких морщин, исчезновения тёмных кругов под глазами, придания коже более светлого оттенка. Немудрено, что косметические компании активно используют этот оптический эффект. Многие средства «от морщин» являются не чем иным, как хорошо составленными увлажнителями. Во всём этом не было бы ничего плохого, если бы производители косметики иногда не применяли бы запрещённые приёмы, а именно, не включали бы в косметические средства одновременно вещества, повышающие проницаемость кожи (самое простое – лаурилсульфат натрия) и вещества, замедляющие испарение воды.


С одной стороны, вследствие лёгкой отёчности, которая после таких средств возникает, морщины волшебным образом исчезают, лицо светлеет и приобретает юношескую припухлость. Однако систематическое применение таких средств в течение длительного времени может нанести эпидермальному барьеру вред. Поэтому, если средство производит мгновенный эффект, преображая лицо буквально на глазах, лучше не применять его каждый день, а отложить на те случаи, когда нужно хорошо выглядеть.


С другой стороны, поддерживая в коже необходимый уровень влаги, мы осуществляем профилактику старческих изменений, создаём условия для нормального функционирования всех кожных структур, укрепляем её защитные свойства. И это не менее (если не более) важно, чем периодическая «стимуляция» кожи и активное вмешательство в её жизнедеятельность.

Способы повышения влажности кожи.

Замедление испарения (окклюзия).


Вода неприрывно поднимается из глубины кожи к её поверхности и затем испаряется. Поэтому, если замедлить её испарение, накрыв кожу чем-нибудь газонепроницаемым, содержание воды в эпидермисе повысится достаточно быстро. Данный способ называют окклюзионным (от англ. occlusion – заграждение, преграда).


Если плёнка будет совсем непроницаемой (например, полиэтиленовая плёнка), то эпидермис слишком сильно намокнет, что приведёт к набуханию рогового слоя и разрушению барьера. Резиновые перчатки и воздухонепроницаемая одежда также приводят к гипергидратации. В таких случаях говорят, что «одежда не дышит».


Полупроницаемая плёнка, которая лишь замедляет, но не прекращает полностью испарение воды, также устранит симптомы сухости, не повреждая при этом кожу.


К ингредиентам, замедляющим испарение воды, относят:

  • Минеральные масла, вазелин, жидкий парафин, цезарин – всё это углеводороды, продукты переработки нефти;
  • Ланолин (от лат. lana – шерсть, oleum – масло) – животный воск, получаемый при очистке шерстяного воска (его экстрагируют органическими растворителями из шерсти овец);
  • Животные жиры – гусиный жир, китовый жир (спермацет), свинной жир;
  • Сквален и его производное сквалан (от лат. Squalus – акула) – естественный компонент кожного сала человека; источники получения разные (например, печень акулы, некоторые растения);
  • Растительные масла – в основном твёрдые, например, масло ши (карите);
  • Природные воски и их эфиры – пчелиный воск, растительные воски (хвойный тростниковый и пр.).

Приведённые выше компоненты различаются по силе окклюзии. Самым надёжным проверенным увлажняющим компонентом считается вазелин. В дерматологии его применяют для увлажнения кожи при экземе, псориазе, атопическом дерматите и других заболеваниях. Недостатками вазелина и других производных минерального масла является неприятное чувство тяжести и жирности.


Из-за того что вазелин слишком хорошо увлажняет, он может замедлить восстановление эпидермиального барьера – клетки не будут вовремя получать сигнал о том, что барьер нуждается в починке.


Окклюзионные увлажняющие кремы (т.е. преграждающие испарение влаги) быстро устраняют сухость кожи, уменьшают воспаление и зуд при кожных заболеваниях, однако они не действуют на причину обезвоживания кожи. Их можно сравнить с костылями, которые необходимы тем, кто не может передвигаться самостоятельно, но совершенно не нужны людям с нормальными ногами.


Если барьерная функция кожи не может быть восстановлена, окклюзионные кремы необходимы. Если же шанс на восстановление есть, их нужно использовать лишь при первоначальном этапе.


Есть несколько категорий косметических средств, применяемых, когда использование окклюзионных компонентов оправдано. Например, средства постпилингового ухода, наносимые на кожу с повреждённым после пилинга барьером. В таких случаях окклюзионные препараты выполняют роль «скорой помощи», поддерживая неоходимый для нормальной жизнедеятельности клеток уровень влаги в самый острый период.


Окклюзионными свойствами должны обладать детские косметические средства для ухода за кожей в области подгузников – там, где кожа постоянно раздражается.


В защитные средства для рук также включают окклюзионные ингредиенты. Ни одна часть тела не подвергается такой сильной атаке со стороны внешней среды, как руки. Кожа на них постоянно травмируется, даже повседневное мытьё мылом (не говоря уже о контакте со средствами бытовой химии), содержащим поверхностно-активные вещества, повреждает липидный барьер. Нанесение окклюзионного средства предохранит кожу рук от высыхания и смягчит её.


Надо заметить, что практически в любом увлажняющем креме есть компоненты, уменьшающие испарение благодаря окклюзии. Но если в одних препаратах это главный компонент, то в других – это компонент вспомогательный, а основная роль отводится веществам, которые поглощают и удерживают влагу.


Улавливание влаги.


Применение веществ, способных связывать и удерживать молекулы воды (такие соединения называются гигроскопичными) – замечательный способ быстро увлажнить кожу. В косметике используют две категории гигроскопичных соединений, действующих на кожу двумя различными методами.


Метод «влажного компреса».


Некоторые вещества закрепляются на поверхности кожи и впитывают влагу, словно губка, образуя что-то похожее на влажный компресс. Таким действием обладают:

  • Глицерин;
  • Сорбитол;
  • Полигликоли (пропиленгликоль, этиленгликоль);
  • Полисахариды – гиалуроновая кислота, хитозан, полисахариды растительного и морского происхождения (хондроитинсульфат, мукополисахариды), пектины;
  • Белковые молекулы и их гидролизаты (в частности, популярные косметические ингредиенты коллаген и эластин включают в косметику именно как увлажняющие агенты);
  • Полинуклеиновые кислоты (ДНК) и их гидролизаты.

В этом списке, в том числе, присутствуют вещества, имеющие крупные полимерные молекулы (более 3000 Да), которые из-за своих размеров не способны проникать через роговой слой.


Перечисленные компоненты встречаются практически во всех косметических формах, в том числе в эмульсионных (кремах). Однако, больше всего их в гелях и «жидких» средствах (тониках, лосьонах, сыворотках, концентратах).


А теперь внимание: использование средств, увлажняющих кожу по типу «влажного компресса», не всегда оправдано.


Например, в сухом климате, когда относительное содержание воды в окружающей среде ниже, чем в роговом слое, компресс начинает «вытягивать» воду из кожи. В результате роговой слой становится суше.


Напротив, при высокой влажности воздуха нанесение косметики с данными компонентами реально смягчает и увлажняет кожу. При этом улучшается и внешний вид кожи – она приобретает матовый блеск, немного подтягивается и разглаживается.


Кстати, именно благодаря высыханию «компресс» обладает разглаживающим действием. Высокомолекулярные соединения, налипшие на кожу и образующие на ней что-то вроде сетки, сами сжимаются и тянут за собой кожу. В результате получается «поверхностный лифтинг», который декларируют аннотации подобных косметических средств. Выраженность поверхностного лифтинга зависит от степени высыхания: чем суше компресс, тем сильнее лифтинг (вплоть до возникновения чувства стягивания, характерного для сухой кожи).


Чтобы предотвратить быстрое испарение воды из «влажного компресса», в косметические средства добавляют вещества, действующие по типу окклюзии.


Другой вариант – использование взаимодополняющей пары, например, увлажняющий тоник плюс крем. Последовательное нанесение сначала тоника, а сверху крема поможет смягчить кожу и сохранить в ней влагу на более длительный срок.


Отметим, что в профессиональной косметике предпочитают второй вариант, т.к. он даёт больше возможностей в плане индивидуального подхода к коже разных типов и учёту климатических особенностей.


Метод «Глубокого» увлажнения кожи.


На некоторых косметических средствах пишут, что они оказывают эффект глубокого увлажнения кожи. Что это означает?


Распространённым заблуждением является думать, что увлажняются все слои кожи, в том числе глубокие. На самом деле увлажняется исключительно роговой слой.


Роль естественных губок в роговом слое играют компоненты натурального увлажняющего фактора (NMF) – свободные аминокислоты, мочевина, молочная кислота, пироглутамат натрия. Они расположены во всём роговом слое, и только в нём.



Рис. Влагоудерживающие структуры рогового слоя.

Эти соединения образуются в результате распада белков (в основном филагринов), обеспечивающих сцепление клеток, лежащих под роговым слоем. Перейдя в роговой слой, клетки не только утрачивают ядро, связи между ними также постепенно разрушаются (именно поэтому не скреплённые друг с другом роговые чешуйки свободно слущиваются с поверхности кожи).


Молекулы NMF расположены в непосредственной близости от корнеоцитов. С NMF ассоциирована значительная часть воды, присутствующая в роговом слое. Связанная вода участвует в склеивании роговых чешуек и наряду с кожным салом обеспечивает пластичность и гладкость поверхности кожи, однако, не препятствует дезинтеграции чешуек и их естественному удалению.


В отличие от крупных высокомолекулярных соединений, компоненты NMF, нанесённые в составе косметических средств, могут проникать в толщу рогового слоя (но не глубже) и повысить его влагоудерживающий потенциал. Увлажнение, которое при этом ощущается, как правило, не столь выражено и наступает не так быстро, как по типу «влажного компресса», зато длиться дольше и меньше зависит от влажности воздуха. Эффект лифтинга при этом не наблюдается.


Вещества, поглащающие и удерживающие влагу, лучше всего увлажняют кожу либо во влажном воздухе, либо если их наносят непосредственно после принятия ванны или душа. Они повышают пластичность роговых чешуек и уменьшают шероховатость поверхности кожи. Однако они не уменьшают раздражённость кожи и не создают такого впечатления упругости и свежести, как окклюзионные средства. Поэтому в косметических рецептурах их обычно комбинируют с окклюзионными компонентами.

Восстановление повреждённого липидного барьера.

Повреждение барьера – одна из причин сухости.


Повреждение липидного барьера рогового слоя (изменение липидного состава, структурные изменения, разрушение) являются одной из самых частых причин сухости кожи. Основным показателем того, что барьер нарушен, будет повышение индекса трансэпидермальной потери воды (ТЭПВ).


Даже если нарушение липидного барьера не является первопричиной развития сухости, оно всё равно имеет место, если кожа длительное время страдает от недостатка влаги. Поэтому помимо применения увлажняющих средств, которые снимают ощущение сухости и повышают содержание влаги в роговом слое, необходимо применять средства, предназначенные для восстановления барьера.


Прежде всего, повреждения в барьере следует довольно быстро чем-то залатать. Для этого применяют липиды, как в виде чистых масел, так и в комбинации с другими ингредиентами в составе местных препаратов.


Молекулы липидов проникают в межклеточные промежутки и встраиваются в липидный барьер. Часть нанесённых сверху молекул липидов постепенно передвигается по межклеточным промежуткам, достигает живых слоёв эпидермиса и включается в клеточный метаболизм. В том числе они могут служить субстратом для дальнейшего синтеза липидов, характерного для кожного барьера.


Вещества, используемые для восстановления барьера.


Природные масла – это смеси липидов. Поэтому восстановительная эффективность и преимущественный механизм действия масел будет зависеть от их липидного состава. Масла, содержащие незаменимые жирные кислоты (линолевую и гамма-линолевую), способствуют ускоренному синтезу компонентов липидного барьера, доставляя необходимые предшественники липидов прямо к клеткам (масло бурачника (огуречника), энотеры (ослинника), семян чёрной смородины).


Масла, обогощённые насыщенными и мононенасыщенными жирными кислотами, имеют более выраженные окклюзионные свойства и способствуют восстановлению барьерных свойств за счёт гидратации эпидермиса (масла ши, сального дерева, макадамии, кукурузное, кокосовое, какао, кешью).


Очень эффективны липидные смеси, составленные из физиологических липидов – церамидов, холестерина, и свободных жирных кислот. Физиологическими эти липиды называют потому, что они составляют естественный липидный барьер рогового слоя человека. Экспериментально было установлено, что наилучшими восстанавливающими свойствами обладает их эквимолярная (т.е. в равных частях) смесь – «церамиды/холестерин/свободные жирные кислоты».


Мицеллы, липосомы, ламеллы.


Не случайно липиды – одни из самых популярных косметических ингредиентов. Они могут включаться в рецептуры и как отдельные молекулы, и как структурные образования. К последним относятся, например, липосомы и мицеллы. Помимо традиционной роли, возложенной на липиды, такие структуры выполняют функцию переносчиков или контейнеров для других биологически активных компонентов, стабилизируя их и облегчая проникновение через роговой слой.


Относительно новой технологией в косметике стало использование так называемых ламеллярных эмульсий на основе фосфатидилхолина (лецитина), в которых мельчайшие капли липидов стабилизированы не обычными эмульгаторами, а сетью биослоёв, наподобие тех, которые составляют липидный барьер. «Препараты, структурно соответствующие коже» - так часто называют данные косметические средства. Они обладают прекрасными увлажняющими и восстанавливающими свойствами, поскольку совместимы с липидным барьером не только по составу, но и структуре, что особенно важно в случае сухой или чувствительной кожи.


Кожа, поницаемость которой повышена, отличается повышенной чувствительностью к токсическим и раздражающим воздействиям. Поэтому до тех пор, пока её барьрный слой не будет восстановлен, она нуждается в защите.


Для защиты кожи от повреждающих воздействий используют плёнкообразующие вещества и антиоксиданты. Хорошую защиту для кожи обеспечивают биополимеры, которые образуют на поверхности кожи полупроницаемую плёнку. Это, прежде всего, природные полисахариды – хитозан и гиалуроновая кислота.


Защита липидного барьера от окисления


Наряду с механической защитой липидный барьер повреждённой кожи нужно защищать от перекисного окисления. Для этого в косметику вводятся антиоксиданты – вещества, обезвреживающие свободные радикалы и обрывающие цепные реакции окисления.


Самым распространённым косметическим антиоксидантом является витамин Е, который легко проникает в липидные слои (поскольку он жирорастворимый) и предохраняет их от окисления.


Также используются водорастворимые антиоксиданты – витамин С и биофлавоноиды (растительные полифенолы).


Последовательность восстановления барьера.


Кремы, создающие на поверхности кожи временный барьер, частично устраняют последствия повреждения эпидермального барьера и предотвращают развитие патологических реакций, но они не ускоряют, а иногда (особенно при длительном использовании) даже замедляют процесс восстановления барьера.


Для того чтобы привести кожу в нормальное состояние, необходимо добиться полного восстановления её структуры и функций. Если в коже есть всё необходимое для синтеза эндогенных липидов (липиды-предшественники и ферменты), - барьер полностью восстанавливается в течении трёх дней. В противном случае коже потребуется дополнительная помощь.


Теперь, когда первый стресс, вызванный повреждением эпидермального барьера, прошёл, можно применять жировые компоненты (липиды), которые будут проникать вглубь кожи, снабжая клетки необходимым строительным материалом.


Так как клетки кожи располагают всем необходимым для того, чтобы разобрать жиры на составные части, нет принципиальной разницы, какие именно липиды будут использованы, - главное, чтобы они содержали необходимые компоненты.


Чаще всего для снабжения кожи строительным материалом используют масла, содержащие незаменимые жирные кислоты – линолевую, линоленовую, гамма-линоленовую кислоту (ГЛК). Их применяют как в составе косметических средств, так и в виде пищевых добавок. Особенно благотворным действием на кожу обладают масла богатые ГЛК, например, семяна чёрной смородины, бурачника.


Следует помнить, что процесс восстановления кожи происходит медленно. Поэтому эффект от применения вазелина, эмолентов и увлажняющих средств будет заметнее, чем эффект от применения кремов, содержащих незаменимые жирные кислоты.


Так как полиненасыщенные жирные кислоты не могут быть средством экстренной помощи при разрушении барьера, их нужно принимать регулярно, чтобы не допускать возникновения дефицитных состояний.


Шершавость кожи, ощущение стянутости, раздражённость – всё это можно сравнительно быстро устранить комбинацией эмолентов. Для этого применяют рецептуры, которые, с одной стороны, имеют средние или низкие показатели растекаемости (т.е. плохо размазываются по коже и воспринимаются довольно жирными), с другой стороны, они должны иметь средние показатели впитываемости. Другими словами, они должны некоторое время ощущаться на коже в виде тонкой жировой плёнки.


Эмоленты (среди которых много масел) несколько ограничивают испарение воды и поэтому, как и окклюзионные средства, повышают содержание влаги на коже. Помимо этого, они смягчают кожу и приглаживают роговые чешуйки, улучшая внешний вид кожи. Эмоленты, строго говоря, не являются увлажняющими средствами, так как они мало влияют на содержание влаги на коже, но они помогают существенно уменьшить неприятные ощущения, вызванные сухостью кожи.

Раздражение от использования увлажняющих средств.

Хотя увлажняющие кремы должны уменьшать раздражимость кожи (т.е. повысить порог её чувствительности), в жизни многие из них оказывают прямо противоположное действие. Это объясняется тем, что при пересыщении рогового слоя водой (такое состояние называется гипергидратацией) он становится более проницаемым, а значит через него могут проходить вещества, которые ранее через него не проходили. Поэтому надо следить, чтобы в увлажняющих средствах было как можно меньше веществ, потенциально способных вызвать раздражение кожи.


Вот список некоторых из таких веществ:


  • Citral –цитраль,
  • Cinnamic aldehyde – циннамоновый альдегид,
  • Benzyl salicylate – бензилсалицилат,
  • Phenylacetaldehyde – фенилацетальдегид,
  • Balsam of Peru – перуанский бальзам,
  • Lemon oil - эфирное масло лимона,
  • Methyl heptane carbonate
  • Jasmin oil - эфирное масло жасмина,
  • Cananga oil – масло кананга,
  • Ylang-ylang oil – масло иланг-иланга,
  • Bergamot oil - эфирное масло бергамота,
  • Lavender oil – эфирное масло лаванды,
  • Cedar wood oil – кедровое масло,
  • Neroli oil – масло нероли,
  • Beeswax – пчелиный воск (для тех, у кого аллергия на мёд),
  • Hexachlorophene – гексахлорофен,
  • Parabens – парабены,
  • Almond oil – миндальное масло,
  • Sesame oil – кунжутовое масло,
  • Peanut oil – арахисовое масло,
  • Imidazolidinyl urea – имидазолидинилмочевина,
  • Triethanolamine – триэтаноламин,
  • Surfactants – поверхностно активные вещества,
  • Vitamin A (retinol, retinoic acid) – витамин А,
  • Alcohols – спирты.

  • Список этот не полный, так как, по данным литературы, раздражение кожи могут также вызывать пропиленгликоль, феноксиэтанол, консерванты, которые выделяют формальдегид, практически все эфирные масла и многие другие компоненты. Именно поэтому, покупая увлажняющее средство для чувствительной, склонной к раздражению кожи, нужно выбирать то, рецептура которого содержит как можно меньше ингредиентов. Если перед вами средство из 40 и более компонентов, вероятность того, что какое-то из них вашей коже не понравится, очень велика.

    Сухая кожа и питание.

    Неоднократно было замечено, что кожа не является органом пищеварения, поэтому, «напитать» её извне не так просто. Многие вещества должны обязательно пройти через пищеварительную систему и подвергнуться действию разнообразнейших ферментов, прежде чем их можно будет использовать для подкармливания клеток тела (и клетки кожи – не исключение). Поэтому наряду с применением косметики, восполняющей дефицит незаменимых жирных кислот и антиоксидантов, полезно внести изменения в диету.


    Это означаете ограничение потребления мяса и жирной птицы, а также чипсов, гамбургеров и пр. Вместо мяса нужно приучиться есть жирную рыбу, такую как лосось, треска, макрель. Рыба является источником ценных омега-3 жирных кислот, которые необходимы для восстановления баланса иммунной системы организма. Однако надо учитывать, что сейчас многие виды крупных хищных океанических рыб признаны не вполне безопасными для здоровья из-за того, что в их мясе может накапливаться ртуть и другие токсины.


    Как источник антиоксидантных витаминов используют салат из капусты и моркови с маслом,фрукты (цитрусовые, яблоки и пр.), ягоды (облепиха, черника, виноград и пр.).


    Хотя все полезные вещества лучше всего получать в составе пищевых продуктов, а не в виде таблеток, иногда стоит дополнять рацион пищевыми добавками, содержащими незаменимые жирные кислоты и антиоксидантные витамины.

    Сухость воздуха - сухость кожи.

    Одним из самых эффективных способов борьбы с сухостью кожи является повышение влажности воздуха. Экспериментально показано, что длительное пребывание в сухом воздухе приводит к повреждению барьерной функции кожи, что влечёт за собой развитие сухости кожи.


    Повысить влажность воздуха можно разными путями – купить увлажнитель, накрывать батареи центрального отопления влажной тканью, ставить в комнате ёмкости с водой, растения с большими листьями или аквариум.


    Если есть возможность регулировать температуру в помещении, то нужно поддерживать её на минимальном комфортном значении.


    Если сухость воздуха неизбежна, то нужно после каждого умывания или принятия душа наносить на ещё влажную кожу увлажняющее средство.

    Увлажнение при кожных заболеваниях.

    Многие кожные заболевания сопровождаются сухостью кожи. Дерматологи давно заметили, что применение смягчающих и увлажняющих средств уменьшает неприятные ощущения при ряде кожных заболеваний и даже гасит воспалительную реакцию.


    Однако лишь в последнее время увлажняющие средства и эмоленты были признаны важным подспорьем дерматолога при лечении кожных заболеваний.


    При многих кожных заболеваниях кожа не способна формировать полноценный эпидермальный барьер, поэтому она плохо удерживает воду и легко пропускает аллергенные и токсичные вещества.


    Само по себе повышенное испарение воды через роговой слой уже является сигналом тревоги для клеток, по которому они начинают выделять сигнальные молекулы, многие из которых способны разжечь в коже костёр воспалительной реакции.


    Вместе с тем, систематическое применение средств, нормализующих испарение влаги с кожи и создающих временный барьер, гасит этот костёр и позволяет коже нормально функционировать даже при нарушенном барьере.


    Так как при нарушенном барьере кожа заведомо отличается высокой реактивностью, то рецептуры косметических средств для людей, сухость кожи которых вызвана кожными заболеваниями, должны быть самыми простыми, т.е. содержать как можно меньше компонентов. В самом простом варианте это может быть хорошо очищенный вазелин (раньше это был ланолин, но потом из-за появления сообщений об аллергических реакциях на ланолин от него в основном отказались).


    Существуют дерматологические составы, содержащие суспензию фосфолипидных липосом или ламеллярные эмульсии, приготовленные по особой технологии без ПАВ, душистых добавок и консервантов.


    Увлажнение – важнейшая часть корнеотерапевтического подхода к решению проблемы ухода за кожей. Его суть заключается в том, что достаточно привести роговой слой в порядок и поддерживать его, чтобы продлить молодость и здоровье нашей кожи, помочь ей справиться с различными кожными болезнями (если таковые имеются) полностью или частично, уменьшив неприятные ощущения.


    Выбор подходящего увлажнителя – задача непростая, и зачастую её невозможно сразу решить, ориентируясь только на внешние признаки сухости кожи. До недавнего времени подбор увлажняющего средства проводился методом проб и ошибок. Сейчас с появлением в косметических салонах специальной аппаратуры можно точно установить ведущее звено в патогенезе сухости кожи у данного человека и, исходя из этой информации, подобрать индивидуально подходящий увлажнитель.


    Причинами увлажнения во время строительства могут служить:

    Применение для стен влагоемких и гигроскопичных материалов;

    Применение материалов и конструкций с высоким содержанием влаги вследствие неправильной транспортировки, хранения на складах, в ходе строительства;

    Замачивание материалов и конструкций в ходе строительства;

    Пропарка индустриальных конструкций и ускоренный ввод их в эксплуатацию.

    Различают способы осушения:

    1. Тепловое: естественное - обветривание воздухом в течение 1 - 2 лет после возведения в зависимости от климатических условий района и расположения здания в застройке; искусственное - усиленным отоплением или обогревом помещений горячим воздухом и усиленной вентиляцией помещений; электропрогревом - путем наложения на поверхность стены электродов и подачи на них напряжения 60 В.

    2. Сорбционное: путем осушения воздуха фтористым кальцием, расставляемым вдоль сырых стен в поддонах или в специальных установках без притока внешнего воздуха.

    Причинами атмосферного увлажнения являются:

    Повреждение кровли и как следствие - увлажнение утеплителя крыши;

    Неорганизованный водоотвод, затекание воды на стены при малом выносе карниза, увлажнение стен косым дождем, разбрызгивание воды от тротуара или на пристройках;

    Нарушение герметичности стыков панелей;

    Повреждение водосточных желобов на карнизе и труб в местах их изломов;

    Повреждения покрытий парапетов, карнизов, балконов отмостки;

    Дефекты устройства и деформация стыков крупнопанельных зданий.

    Предварительно следует устранить причину увлажнения и осушить стену, для чего необходимо:

    содержать в исправном состоянии кровлю, цоколь, отмостки, водосточные устройства, покрытия парапетов, карнизов, подоконных сливов; восстановить герметичность стыков в крупнопанельных зданиях; произвести гидрофобизацию влагоемких, намокаемых от дождя стен, т.е. пропитку под давлением путем напыления 20-50%-ного водного раствора метилсиликоната натрия ГКЖ-10 или ГКЖ-11 (расход 20%-ной эмульсии на 1 м 2 стены - 250-300 г).

    Причинами технологического и бытового увлажнения являются:

    Теплопроводные стены и образование на внутренней поверхности «точки росы»;

    Отсутствие пароизоляции на внутренней поверхности и наличие влагонепроницаемого слоя на наружной поверхности в зданиях (помещениях с мокрым процессом);

    Выделение большого количества влаги при сгорании бытового газа - химический источник увлажнения;

    Повреждение технических и технологических систем и пролив жидкостей.

    Вначале необходимо осушить стены, а потом защитить их от технологической влаги следующим образом: устроить на внутренней поверхности гидроизоляцию с защитой ее штукатуркой, облицовкой. При необходимости предварительно утеплить стену для исключения «точки росы»; обеспечить усиленную вентиляцию в помещениях с газовыми горелками.

    Причинами увлажнения от грунтовых и атмосферных вод являются:

    Повреждение гидроизоляции при деформации фундаментов и стен;

    Старение гидроизоляции;

    Некачественное устройство или пропуск гидроизоляции;

    Повреждение облицовки цоколя или применение неморозостойкого материала;

    Поднятие уровня ГГВ при обводнении участка застройки;

    Подсыпка грунта вокруг здания.

    Разработаны следующие системы защиты: инъецирование, диффузионная пропитка, поверхностная пропитка, устройство санирующих защитных пластырей.

    Существует два основных вида инъецирования: конструкционное и неконструкционное. В соответствии с этим предусматривается использование двух систем материалов: минеральных композиций, модифицируемых индивидуально для каждого отдельного объекта, и органосиликоновых композиций, которые, отверждаясь в материале конструкции, создают горизонтальные и вертикальные барьеры, препятствующие увлажнению. Их долговечность, эластичность и хорошая совместимость с материалом конструкций обеспечивают надежную защиту от статических и динамических нагрузок.

    К наиболее распространенным составам, применяемым в мировой практике для инъецирования против подтопления, относятся эпоксидные, полиуретановые и акрилатные смолы. Наилучшие результаты были достигнуты в конструкциях, инъецируемых ак-рилатными материалами олигомерной структуры.

    Широко используются для неконструкционного инъецирования два метода:

    Инъецирование под высоким давлением, применяемое для защиты от гидростатического давления (подтопления) и для стабилизации грунта;

    Инъецирование под низким давлением, применяемое для защиты от капиллярной поднимающейся влаги (капиллярного подсоса)-«метод отсечки».

    Диффузионная пропитка конструкций предназначена для защиты от капиллярной поднимающейся влаги. Она предусматривает насыщение конструкции раствором при естественном давлении и используется для сужения и гидрофибизации капилляров конструкции. Применяемая в данной системе жидкость состоит из силиконов и эфиров кремниевой кислоты, благодаря чему данный состав заполняет крупные капилляры и гид-рофобизует стенки микропор и микрокапилляры. Так как она обладает вязкостью воды, она легко проникает в материал конструкции и образует в нем водонепроницаемый барьер.

    Поверхностная пропитка конструкций разделяется на три основные группы: использование пленкообразующих, укрепляющих и гидрофобизующих составов.

    В большинстве случаев не следует применять пленкообразующие составы. Они образуют на поверхности видимую пленку (прозрачную или цветную), что приводит к повышению диффузионного сопротивления испаряющейся из конструкции влаги. Вследствие закупорки пор, обеспечивающих паропроницаемость, влага скапливается под пленкой, отрывает ее, образуются мельчайшие трещины, изменяется цвет пленки. Долговечность таких защитных систем, как и систем, использующих краску, весьма ограничена (5-10 лет).

    Разработаны и применяются составы, совместимые с материалом обрабатываемой поверхности, надежно защищающие их даже при увлажнении во время дождя, в то же время активно «дышащие» - паропроницаемые. В качестве защитных средств для пропитки поверхности использует гидрофобизаторы на кремнийорганической основе, обладающие высокой проникающей способностью на глубину до плотного, хорошо сохранившегося слоя материала. Долговечность этих материалов составляет в среднем 15-20 лет, при условии соблюдения технологии пропитки. Сочетание укрепляющего и гидрофобизирующего эффектов этих материалов делает их наиболее пригодными для обработки исторических зданий и сооружений. Такая обработка обеспечивает защиту и, при необходимости, консервацию конструкций на длительный период времени и значительно сокращает эксплуатационные расходы.

    © 2024 softlot.ru
    Строительный портал SoftLot