Котлотурбинный цех тэц. Как работает тепловая электростанция (ТЭЦ)? Станции на угле

Назначение теплоэлектростанции заключается в превращении химической энергии топлива в электрическую энергию. Так как совершить такое преобразование непосредственно оказывается практически невозможным, то приходится сначала превращать химическую энергию топлива в тепло, что производится путем сжигания топлива, затем преобразовывать тепло в механическую энергию и, наконец, эту последнюю превращать в электрическую энергию.

На рисунке ниже представлена простейшая схема тепловой части электрической станции, именуемой часто паросиловой установкой. Сжигание топлива производится в топке . При этом . Полученное тепло передается воде, находящейся в паровом котле. Вследствие этого вода нагревается и затем испаряется, образуя так называемый насыщенный пар, т. е. пар, имеющий ту же температуру, что и кипящая вода. Далее тепло подводится к насыщенному пару, в результате чего образуется перегретый пар, т. е. пар, имеющий более высокую температуру, чем испаряющаяся при том же давлении вода. Перегретый пар получается из насыщенного в пароперегревателе, в большинстве случаев представляющем собой змеевик из стальных труб. Пар движется внутри труб, с внешней же стороны змеевик омывается горячими газами.

Если бы давление в котле было равно атмосферному, то воду необходимо было бы нагреть до температуры 100° С; при дальнейшем сообщении тепла она начала бы быстро испаряться. Получающийся при этом насыщенный пар имел бы также температуру 100° С. При атмосферном давлении пар будет перегретым в том случае, когда температура его выше 100° С. Если давление в котле выше атмосферного, то насыщенный пар имеет температуру выше 100° С. Температура насыщенного пара тем выше, чем больше давление. В настоящее время в энергетике вообще не применяются паровые котлы с давлением, близким к атмосферному. Гораздо более выгодным оказывается применение паровых котлов, рассчитанных на значительно большее давление, порядка 100 атмосфер и более. Температура насыщенного пара при этом составляет 310° С и более.

Из пароперегревателя перегретый водяной пар по стальному трубопроводу подается к тепловому двигателю, чаще всего - . В существующих паросиловых установках электрических станций другие двигатели почти никогда не применяются. Перегретый водяной пар, поступающий в тепловой двигатель, содержит большой запас тепловой энергии, выделившейся в результате сжигания топлива. Задачей теплового двигателя является преобразование тепловой энергии пара в механическую энергию.

Давление и температура пара на входе в паровую турбину, именуемые обычно , значительно выше, чем давление и температура пара на выходе из турбины. Давление и температура пара на выходе из паровой турбины, равные давлению и температуре в конденсаторе, называются обычно . В настоящее время, как уже было сказано, в энергетике применяется пар весьма высоких начальных параметров, с давлением до 300 атмосфер и с температурой до 600° С. Конечные параметры, напротив, выбираются низкими: давление около 0,04 атмосферы, т. е. в 25 раз меньше атмосферного, а температура около 30° С, т. е. близкой к температуре окружащей среды. При расширении пара в турбине вследствие уменьшения давления и температуры пара количество заключенной в нем тепловой энергии на много уменьшается. Так как процесс расширения пара происходит весьма быстро, то за это весьма короткое время сколько-нибудь значительный переход тепла от пара к окружающей среде осуществиться не успевает. Куда же идет избыток тепловой энергии? Известно ведь, что согласно основному закону природы - закону сохранения и превращения энергии - невозможно уничтожить или получить «из ничего» любое, даже самое малое, количество энергии. Энергия может только переходить из одного вида в другой. Очевидно, именно с такого рода преобразованием энергии мы имеем дело и в данном случае. Избыток тепловой энергии, заключенный ранее в паре, перешел в механическую энергию и может быть использован по нашему усмотрению.

О том, как работает паровая турбина, рассказывается в статье о .

Здесь мы скажем только, что струя пара, поступающая на лопатки турбины, имеет весьма большую скорость, часто превышающую скорость звука. Струя пара приводит во вращение диск паровой турбины и вал, на который диск насажен. Вал турбины может быть связан, например, с электрической машиной - генератором. В задачу генератора входит преобразование механической энергии вращения вала в энергию электрическую. Таким образом, химическая энергия топлива в паросиловой установке превращается в механическую и далее в электрическую энергию, которую можно хранить в ИБП переменного тока.

Пар, совершивший работу в двигателе, поступает в конденсатор. По трубкам конденсатора непрерывно прокачивается охлаждающая вода, забираемая обычно из какого-либо естественного водоема: реки, озера, моря. Охлаждающая вода забирает тепло от пара, поступившего в конденсатор, вследствие чего пар конденсируется, т. е. превращается в воду. Образовавшаяся в результате конденсации вода с помощью насоса подается в паровой котел, в котором снова испаряется, и весь процесс повторяется заново.

Таково в принципе действие паросиловой установки теплоэлектрической станции. Как видно, пар служит посредником, так называемым рабочим телом, с помощью которого химическая энергия топлива, преобразованная в тепловую энергию, превращается в механическую энергию.

Не следует думать, конечно, что устройство современного, мощного, парового котла или теплового двигателя столь просто, как это показано на рисунке выше. Напротив, котел и турбина, являющиеся важнейшими элементами паросиловой установки, имеют весьма сложное устройство.

К объяснению работы и мы сейчас и приступаем.

Интерактивное приложение «Как работает ТЭЦ»

На картинке слева - электростанция « Мосэнерго» , где вырабатывается электроэнергия и тепло для Москвы и области. В качестве топлива используется самое экологически чистое топливо - природный газ. На ТЭЦ газ поступает по газопроводу в паровой котел. В котле газ сгорает и нагревает воду.

Чтобы газ лучше горел, в котлах установлены тягодутьевые механизмы. В котел подается воздух, который служит окислителем в процессе сгорания газа. Для снижения уровня шума механизмы снабжены шумоглушителями. Образовавшиеся при горении топлива дымовые газы отводятся в дымовую трубу и рассеиваются в атмосфере.

Раскаленный газ устремляется по газоходу и нагревает воду, проходящую по специальным трубкам котла. При нагревании вода превращается в перегретый пар, который поступает в паровую турбину. Пар поступает внутрь турбины и начинает вращать лопатки турбины, которые связаны с ротором генератора. Энергия пара превращается в механическую энергию. В генераторе механическая энергия переходит в электрическую, ротор продолжает вращаться, создавая в обмотках статора переменный электрический ток.

Через повышающий трансформатор и понижающую трансформаторную подстанцию электроэнергия по линиям электропередач поступает потребителям. Отработавший в турбине пар направляется в конденсатор, где превращается в воду и возвращается в котел. На ТЭЦ вода движется по кругу. Градирни предназначены для охлаждения воды. На ТЭЦ используются вентиляторные и башенные градирни. Вода в градирнях охлаждается атмосферным воздухом. В результате выделяется пар, который мы и видим над градирней в виде облаков. Вода в градирнях под напором поднимается вверх и водопадом падает вниз в аванкамеру, откуда поступает обратно на ТЭЦ. Для снижения капельного уноса градирни оснащены водоуловителями.

Водоснабжение осуществляется от Москвы-реки. В здании химводоочистки вода очищается от механических примесей и поступает на группы фильтров. На одних она подготавливается до уровня очищенной воды для подпитки теплосети, на других - до уровня обессоленной воды и идет на подпитку энергоблоков.

Цикл, используемый для горячего водоснабжения и теплофикации, также замкнутый. Часть пара из паровой турбины направляется в водонагреватели. Далее горячая вода направляется в тепловые пункты, где происходит теплообмен с водой, поступающей из домов.

Высококлассные специалисты « Мосэнерго» круглосуточно поддерживают процесс производства, обеспечивая огромный мегаполис электроэнергией и теплом.

Как работает парогазовый энергоблок


1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

Современный мир требует огромного количества энергии (электрической и тепловой), которая производится на электростанциях различного типа.

Человек научился добывать энергию из нескольких источников (углеводородное топливо, ядерные ресурсы, падающая вода, ветер и т.д.) Однако и по сей день наиболее востребованными и эффективными остаются тепловые и атомные электростанции, о которых и пойдет речь.

Что такое АЭС?

Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.

Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.

Центральным узлом любой АЭС является ядерная установка, в которой происходит реакция. При распаде радиоактивных веществ происходит выделение огромного количества тепла. Выделяемая тепловая энергия используется для нагрева теплоносителя (как правило, воды), который, в свою очередь, нагревает воду второго контура до перехода ее в пар. Горячий пар вращает турбины, благодаря чему происходит образование электроэнергии.

В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.

Что такое ТЭС?

Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.


Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.

На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.

Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.

Что такое ТЭЦ?

Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.

По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.


ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.

Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.

ВВЕДЕНИЕ

Одной из важнейших отраслей промышленного производства является энергетика. Развитие энергетики должно происходить с опережением темпов развития и роста других отраслей промышленности.

Производство электроэнергии является одним из главных показателей экономического уровня развития страны и отражает общее состояние производящих сил.

В программах индустриального развития регионов нашей страны предусматривается строительство мощных тепловых электростанций. Основным типом ТЭС являются паротурбинные электростанции, которые могут работать на любом топливе, иметь весьма большую мощность и сооружаться там, где есть потребность в тепловой и электрической энергии. При блочной схеме ТЭС, каждый блок в значительной мере является независимым элементом ТЭС, и так как строительство электростанции длится несколько лет, часто блоки второй очереди имеют более совершенную конструкцию.

С ростом населения Сибири и Дальнего Востока развивается промышленность и сельское хозяйство. Соответственно растет энергопотребление в качестве тепла и электроэнергии. Для этого требуется строительство новых и расширение существующих ТЭС.

С ростом численности населения в городе Чите возрастает потребность в тепловой и электрической энергии. Существующие ТЭС с трудом покрывают их. С этой целью предлагается проект ТЭЦ.

Технологическая часть

Описание технологического процесса

При описании технологической установки используются некоторые термины, являющиеся специфическими для данного типа установок:

Насос - гидравлическая машина, создающая напорное перемещение жидкости при сообщении ей энергии.

Насосный агрегат (НА) - совокупность насоса, электропривода и передаточного механизма (муфта, редуктор, шкив).

Насосная установка (НУ) - комплекс оборудования, обеспечивающий требуемый режим работы насосов одного или нескольких насосных агрегатов. НУ состоит из одного или нескольких насосных агрегатов, трубопроводов, запорной и регулирующей арматуры, контрольно-измерительной аппаратуры, а также аппаратуры управления и защиты.

Насосная станция (НС) - сооружение, включающее в себя одну или несколько насосных установок, а также вспомогательные системы и оборудование.

Тепловая электростанция (ТЭС) - энергопредприятие, предназначенное для преобразования химической энергии органического топлива (каменного угля, мазута, природного газа, сланцев и др.) в электрическую энергию.

Теплоэлектроцентрали (ТЭЦ) - является энергетическим предприятием, предназначенным для выработки и отпуска производственным и коммунально-бытовым потребителям двух видов энергии:

1) тепловой - в виде горячей воды или водяного пара;

2) электрической.

Теплоэлектростанция (ТЭС, ТЭЦ) - это энергетическая установка (собственный энергоблок), работающая на базе газотурбинных или газопоршневых двигателей, которая одновременно вырабатывает несколько видов энергии (как правило, тепло и электричество).

Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплом. В ТЭЦ электроэнергия вырабатывается генераторами электрического тока. Генераторы используют механическую работу двигателей. Системы охлаждения двигателей и выхлопные газы отдают тепловую энергию в виде горячей воды или технического пара.

преобразователь диод электромагнитный транзистор

Рис.1. Технологическая схема паротурбинной электростанции, работающей на твердом топливе; 1 - электрический генератор; 2 - паровая турбина; 3 - пульт управления; 4 - деаэратор; 5 и 6 - бункеры; 7 - сепаратор; 8 - циклон; 9 - котел; 10 - поверхность нагрева (теплообменник); 11 - дымовая труба; 12 - дробильное помещение; 13 - склад резервного топлива; 14 - вагон; 15 - разгрузочное устройство; 16 - конвейер; 17 - дымосос; 18 - канал; 19 - золоуловитель; 20 - вентилятор; 21 - топка; 22 - мельница; 23 - насосная станция; 24 - источник воды; 25 - циркуляционный насос; 26 - регенеративный подогреватель высокого давления; 27 - питательный насос; 28 - конденсатор; 29 - установка химической очистки воды; 30 - повышающий трансформатор; 31 - регенеративный подогреватель низкого давления; 32 - конденсатный насос

Кроме основного оборудования, в комплекс электростанции, как видно из рассмотренной технологической схемы, входит многочисленное вспомогательное оборудование, а именно: механизированные склады твердого топлива, мазутное и газовое хозяйство, оборудование шлакозолоудаления, устройства для подготовки добавочной воды и технического водоснабжения, маслохозяйство и др.

Под технологической схемой понимают последовательный путь топлива, воды, пара и электрического тока на паротурбинной электростанции, выдающей внешним потребителям электрическую и тепловую электроэнергию. На рисунке представлена примерная технологическая схема паротурбинной электростанции, работающей на твердом топливе.

С места добычи твердое топливо доставляется на электростанцию по железной дороге в специальных саморазгружающихся вагонах «2». Вагон поступает в закрытое разгрузочное устройство «1» с вагоноопрокидывателей, где топливо высыпается в находящийся под вагоноопрокидывателем приемный бункер, из которого попадает на ленточный транс­портер «6».

В зимнее время вагоны со смерзшимся углем предварительно подают для размораживания в размораживающее устройство. Транспортером уголь подается на склад угля «3» (обслуживаемый мостовым грейферным краном «4») или через дробильную установку «5» в бункера сырого угля «7», установленные перед фронтом котельных агрегатов. В эти бункера уголь может быть подан также со склада «3». Для учета расхода топлива, поступающего в котельное отделение электростанции, на трак­те топлива до бункеров котельной устанавливают весы для взвешивания этого топлива.

Из бункеров сырого угля «7» топливо поступает в систему пылеприготовления: питатели сырого угля «8», а затем углеразмольные мельницы «9», из которых угольная пыль пневматически транспортируется через мельничный сепаратор «10», пылевой циклон «11» и пылевые шнеки «13» в пылеугольный бункер «12». Из, бункера «12» пыль питателями «14» подается к горелкам «17» топочной камеры.

Весь пневматический транспорт пыли от мельницы до топки осуществляется мельничным вентилятором «15». Воздух, необходимый для горения топлива, забирается дутьевым вентилятором «22» из верхней зоны котельной или снаружи, затем подается в воздухоподогреватель «21», откуда после подогрева нагнетается; частично в мельницу «9» для подсушки и транспортировки топлива в топку котельного агрегата (первичный воздух) и непосредственно к пылеугольным горелкам «17» (вторичный воздух).

Растопка пылеугольных котельных агрегатов производится на газе или мазуте. Природный газ поступает из магистрального пункта в газорегулировочный пункт, а оттуда в котельную. Мазут доставляется на электростанцию в железнодорожных цистернах, в которых он перед сливом разогревается острым паром. После разогрева мазут сливается по межрельсовому (также обогреваемому) лотку в приемный резервуар малой емкости, оттуда перекачивающим насосом подаётся в основной расходный резервуар. При растопке котельного агрегата мазут прокачивается насосом «первого подъема» через паровые подогреватели, после которых уже насосами «второго подъема» подается к мазутным форсункам,

В топке «18» и газоходах котельного агрегата «16» тепло газов, образующихся от сгорания топлива, передается последовательно воде (подаваемой в котельный агрегат питательными насосами «38») в водяном экономайзере «20», насыщенному и перегретому пару в топочных экранах и пароперегревателе «19» и воздуху, необходимому для горения топлива, в воздухоподогревателе «21». После воздухоподогревателя газы поступают в золоуловители «23» (механические, гидравлические или электрофильтры) для очистки от содержащейся в них летучей золы и затем дымососом «24» подаются в дымовую трубу «25».

При сгорании топлива образуется значительное количество шлака в топке и летучей золы, выносимой газами из котельного агрегата. Шлак (сухой раскаленный или жидкий) из шлаковых шахт топки котельного агрегата и летучая зола, осажденная в золоуловителях, смывными устройствами направляются в смывные каналы системы гидрошлакозолоудаления «26» и «27», после чего проходят металлоуловитель, шлакодробилку и поступают в багерный насос, которым перекачиваются в виде золошлаковой пульпы по золопроводам на золоотвал.

На паротурбинных электростанциях, сжигающих жидкое (мазут) и газообразное (природный газ) топливо, топливное хозяйство значительно проще, чем на пылеугольных электростанциях, и, кроме того, отсутствует необходимость в золоулавливании и шлакозолоудалении. Свежий перегретый пар после пароперегревателя «19» по паропроводу «28» направляется в ЦВД паровой турбины «31». После ЦВД пар со сниженным давлением и температурой по трубопроводу «29» поступает в промежуточный перегреватель котельного агрегата; расположенный между перегревателем свежего пара «19» и водяным экономайзером «20» и перегревается в нем снова до начальной температуры свежего пара. По трубопроводу «30» nap промежуточного перегрева поступает в ЦСД, а оттуда по верхним перепускным трубам в ЦНД и из них в конденсаторы турбины «33».

Из конденсаторов конденсат насосами «34» направляется на фильтры установки очистки конденсата, а затем в группу вертикальных ре­генеративных подогревателей низкого давления «35» и оттуда в деаэратор «36». Из питательного блока деаэратора «37» вода, освобожденная от растворенных в ней газов - кислорода и углекислоты питательными насосами «55» прокачивается через регенеративные подогреватели высокого давления «39» и по трубопроводам «40» и подается в водяной экономайзер котельного агрегата «20». Здесь замыкается пароводяной тракт паротурбинной электростанции. При работе электростанции в пароводяном тракте происходят потери питательной воды, которые восполняются установкой приготовления и подачи добавочной воды. Химическая очистка сырой воды производится в ионообменных фильтрах химводоочистки «46», откуда вода поступает в бак обессоленной воды, забирается насосом и подается в конденсатор турбины. Для подачи охлаждающей воды в конденсатор турбины служит система технического водоснабжения.

Охлаждающая вода подается через очистные сетки циркуляционными насосами «43» по напорным трубопроводам «44», из источника водоснабжения (в данном примере - береговой насосной станции) «41» и возвращается по сливным трубопроводам «45». Электрический генератор «32» приводится во вращение паровой турбиной и вырабатывает переменный электрический ток, который поступает на повышающие электротрансформаторы, а оттуда на сборные шины открытого распределительного устройства электростанции. К выводам генератора через трансформатор собственных нужд присоединено также распределительное устройство собственных нужд.

На схеме, представленной ниже, отображен состав основного оборудования теплоэлектроцентраль станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭЦ.


Рис 2. Схема состава основного оборудования ТЭЦ и взаимосвязь ее систем Обозначения на схеме ТЭЦ: 1 - Топливное хозяйство; 2 - Подготовка топлива; 3 - котел; 4 - промежуточный пароперегреватель; 5 - часть высокого давления паровой турбины (ЧВД или ЦВД); 6 - часть низкого давления паровой турбины (ЧНД или ЦНД); 7 - электрический генератор; 9 - трансформатор собственных нужд; 10 - трансформатор связи; 11 - главное распределительное устройство; 12 - конденсатор; 13 - конденсатный насос;14 циркуляционный насос; 15 - источник водоснабжения (например, река); 16 - подогреватель низкого давления (ПНД); 17 - водоподготовительная установка (ВПУ); 18 - потребитель тепловой энергии; 19 - насос обратного конденсата; 20 - деаэратор; 21 - питательный насос; 22 - подогреватель высокого давления (ПВД); 23 - шлакозолоудаление; 24 - золоотвал; 25 - дымосос; 26 - дымовая труба; 27 - дутьевой вентилятор (ДВ); 28 - золоуловитель

Особенности работы ТЭЦ

Основной особенностью работы любой электростанции (конденсационной или теплоэлектроцентрали с комбинированной выработкой электроэнергии и теплоэнергии) является то, что ее промышленная продукция (электрическая и тепловая энергия) потребляется в момент производства и не может вырабатываться «на склад» или в резерв. Это значит, что электростанция в каждый данный момент времени должна вырабатывать энергии ровно столько, сколько потребляют ее промышленные предприятия, транспорт, сельское хозяйство, бытовые и другие потребители.

Потребление электроэнергии у разных потребителей меняется во время суток в течение года. Оно, как правило, снижается летом и возрастает в зимнее время, неравномерно изменяется в течение недели (снижается в выходные и праздничные дни) и даже в течение одних суток, зависят от многих факторов.

Изменение мощности электростанции в зависимости от потребления энергии выражают диаграммами, называемыми графиками нагрузки. В зависимости от периода времени, который они охватывают, графики могут быть суточными, месячными, сезонными и годовыми.

Если электрическая нагрузка меняется ежесуточно в течение года в большей или меньшей степени единообразно, то отпуск тепловой нагрузки ТЭЦ в значительной степени зависит от потребителя. При использовании теплоты на технологические нужды промышленного предприятия ее расход определяется графиком работы этого предприятия. Коммунальные нужды требуют теплоту на отопление жилых, общественных и производственных зданий, на вентиляцию, горячее водоснабжение и др.

Несмотря на значительное разнообразие тепловой нагрузки, ее можно разбить на две группы по характеру протекания во времени: сезонную и круглогодичную.

© 2024 softlot.ru
Строительный портал SoftLot