Измерение горизонтальных углов способом приемов. Контроль углов и конусов Приборная шкала для измерения угла

Средства измерения углов и конусов

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минуты – из 60 угловых секунд.

Методы измерения углов можно разделить на 3 основных вида:

1. Метод сравнения с жесткими угловыми мерами или шаблонами.

2. Абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой.

3. Косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Простейшие инструменты для контроля углов – угольники с углом 90 0 , предназначенные для разметки и проверки взаимной перпендикулярности отдельных поверхностей деталей при монтаже оборудования и для контроля инструмента, приборов и станков. В соответствии со стандартом различают 6 типов угольников (рис. 2.12.):


Более универсальные инструменты для контроля и разметки углов – транспортирные угломеры (простые, оптические, универсальные). В машиностроении широко применяются угломеры с нониусом типа УН для измерения наружных и внутренних углов и типа УМ для измерения только наружных углов (рис. 2.13.).

а - для измерения наружных и внутренних углов: 1 - нониус; 2 - основание; 3 - линейка; 4 - стопор; 5 - сектор; 6 - угольник; 7 - съемная линейка; 8 - державка линейки; 9 - державка угольника; б - для измерения только наружных углов: 1 - державка угольника; 2 - угольник; 3 - линейка; Рисунок 2.13 Угломеры а,в - до 90 о: 1 - угольник; 2 - блок концевых мер длины; 3 - линейка; б - до 140 о; г,д - до 60 о; е - внутренних углов; пунктиром показаны положения подвижной измерительной линейки при измерении минимального размера в заданном диапазоне Рисунок 2.14 Приемы измерения углов различной величины

Приемы измерения углов смотрите рис. 2.14.


а - калибрами-пробками; б - калибрами-скобами Рисунок 2.16 Приемы измерения

Калибры применяются для контроля размеров отверстий и наружных поверхностей деталей. В производстве не всегда нужно знать действительный размер. Иногда достаточно убедиться в том, что действительный размер детали находится в пределах установленного допуска, т.е. между наибольшими и наименьшими предельными размерами. В соответствии с этими размерами применяют предельные калибры, которые имеют две (или две пары) измерительные поверхности проходной и непроходной частей. Различают калибры гладкие, резьбовые, конусные и др. Калибры-пробки, калибры-скобы в зависимости от размеров контролируемых деталей, типа производства и других факторов имеют различные конструктивные формы (рис. 2.15, рис. 2.16).

Проходная сторона (ПР) пробки или скобы имеет размер, равный наименьшему предельному размеру отверстия или вала, а непроходная сторона (НЕ) – наибольшему предельному размеру вала и соответственно отверстия. Приемы измерения калибрами-пробками и калибрами-скобами показаны на рис. 2.16.

Калибры для конусов инструментов представляют собой калибры-пробки и калибры-втулки. Контроль инструментальных конусов производят комплексным методом, т.е. одновременно проверяют угол конуса, диаметры и длину (рис. 2.17).



Шаблоны применяют для проверки сложных профилей деталей и линейных размеров. Шаблоны изготовляют из листовой стали. Контроль производят сопряжением шаблона с проверяемой поверхностью. По размеру и равномерности просвета судят о качестве обработки (рис. 2.18., рис. 2.19.).


Контроль резьбы в зависимости от типа (профиля) и точности производится различными контрольно-измерительными средствами.

Шаблоны резьбовые для определения шага и профиля резьбы представляют собой закрепленные в обойме наборы стальных пластин с точными профилями (зубьями) метрической и дюймовой резьб. На каждой пластине указаны значения шага, диаметры резьбы или количество ниток на дюйм.

Шаблоны радиусные служат для измерения отклонения размеров выпуклых и вогнутых поверхностей деталей (рис. 2.18.). Для измерения глубины пазов, высоты и длины уступов применяют предельные калибры-шаблоны, работающие на просвет. Они также имеют две стороны и обозначены Б (для большего размера) и М (для меньшего размера). На рис. 2.19. показаны шаблоны для контроля длины, ширины и высоты выступов и пазов различными методами: "на просвет", "надвиганием" и "методом рисок".

Резьбовые калибры (пробки и кольца) применяют для контроля внутренних и наружных резьб (рис. 2.20.).



Резьбовые микрометры со вставками применяют для измерения среднего диаметра треугольной наружной резьбы.

Вставки выбирают в соответствии с шагом измеряемой резьбы из набора имеющегося в футляре для микрометра (рис. 2.21.). Чтение показаний микрометра производят так же, как при измерении гладких цилиндрических поверхностей.


Контроль резьбы также может быть осуществлен микрометром с применением трех измерительных проволочек (рис. 2.22.). При этом методе измеряется расстояние М между выступающими точками трех проволочек, помещаемых во впадины резьбы, затем путем математических преобразований определяют средний диаметр d 2 резьбы.

Диаметр проволочек d пр выбирают по таблице в зависимости от шага резьбы. Две проволочки устанавливают во впадины с одной стороны, а третью – в противоположную впадину (рис. 2.22.)

Средний диаметр метрической резьбы d 2 = М – 3 d пр + 0,866 Р

Средний диаметр дюймовой резьбы d 2 = М – 3,165 d пр + 0,9605 Р

Плоскопараллельные концевые меры длины применяются для переноса размера единицы длины на изделие (при разметке), проверки и настройки средств измерения (микрометров, калибр скоб и др. измерительных приборов), непосредственного измерения размеров изделий, приспособлений, при наладке станков и т.п.

Одним из основных свойств концевых мер является прилипаемость, способность прочно соединяться между собой при прикладывании и надвигании одной меры на другую с некоторым давлением, что достигается благодаря очень низкой шероховатости измерительных поверхностей. Концевые меры комплектуются в наборе с количеством 7…12 плиток (рис. 2.23).


Наиболее широко применяют наборы, состоящие из 87 и 42 концевых мер. Каждая плитка воспроизводит только один размер, который маркируется на одной из ее сторон. Для удобства использования концевых мер длины к ним выпускают наборы принадлежностей (рис. 2.24.), в состав которых входят: основания – 5, плоскопараллельные, радиусные – 2, чертильные – 3, центровые боковички – 4, державки – 1 для крепления блоков концевых мер с боковичками. Составление блока концевых мер длины производят в соответствии с классом или разрядом плиток и размерами плиток, имеющихся в данном наборе.

Первоначально подбирают меньшую плитку, в размер которой входит последний десятичный знак и т.д. Допустим, необходимо собрать блок концевых мер размером 37,875 мм из набора, состоящего из 87 плиток:

1 плитка 1,005 мм, остаток 36,87

2 плитка 1,37 мм, остаток 35,5

3 плитка 5,5 мм, остаток 30,00

4 плитка 30 мм, остаток 0.

Сумма блок 1,005+1,37+5,5+30 = 37,875.

Таким же способом набирают блок из набора, состоящего из 42 плиток.

1,005+1,07+4,00+30 = 37,875.

а - составление блока требуемого размера; б - притирка плиток в блок; в - проверка погрешности микрометра; г - проверка межосевого расстояния; д - проверка предельных размеров скобы; е - измерение внутреннего диаметра; ж - разметка на плоскости; з - пространственная разметка Рисунок 2.25 Приемы измерения и разметки плоскопараллельными концевыми мерами длины

Приемы измерения плоскопараллельными концевыми мерами длины и разметки с использованием принадлежностей к ним показаны на рис. 2.25.

Угловые призматические меры (плитки) предназначены для проверки и настройки измерительных угломерных приборов и инструментов, а также для непосредственного измерения наружных и внутренних углов деталей с высокой плотностью. Угловые меры выполняют при измерении углов ту же роль,

что и концевые меры при измерении длины. К рабочим сторонам угловых мер предъявляют такие же требования, что и к концевым мерам, т.е. обеспечение адгезии (прилижаемости).


Угловые меры выпускают наборами с количеством 7…93 плиток в каждом (рис. 2.26.). Проверку углов плитками выполняют "на просвет".

Для увеличения прочности блока, собранного из угловых плиток, к ним выпускают набор принадлежностей, в состав которых входят стяжки, винты, клинья и другие (рис. 2.27.). Укрепляют блок через специальные отверстия в плитках.

Правила расчета угловых мер для образования блоков, а также правила подготовки к сборке и сборка их в блок аналогичны правилам, применяемым при составлении концевых мер длины.

Приемы измерения угловыми мерами показаны на рис. 2.28.


Измерение горизонтального угла выполняют способом приемов. При измерении нескольких углов, имеющих общую вершину, применяют способ круговых приемов.

Работу начинают с установки теодолита над центром знака (например, колышка), закрепляющим вершину угла, и визирных целей (вех, специальных марок на штативах) на концах сторон угла.

Установка теодолита в рабочее положение состоит из центрирования прибора, горизонтирования его и фокусирования зрительной трубы.

Центрирование выполняют с помощью отвеса. Устанавливают штатив над колышком так, чтобы плоскость его головки была горизонтальна, а высота соответствовала росту наблюдателя. Закрепляют теодолит на штативе, подвешивают отвес на крючке станового винта и, ослабив его, перемещают теодолит по головке штатива до совмещения острия отвеса с центром колышка. Точность центрирования нитяным отвесом 3 – 5 мм.

Пользуясь оптическим центриром, теодолита (если такой у теодолита имеется), сначала надо выполнить горизонтирование, а затем центрирование. Точность центрирования оптическим центриром 1 – 2 мм.

Горизонтирование теодолита выполняют в следующем порядке. Поворачивая алидаду, устанавливают ее уровень по направлению двух подъемных винтов, и, вращая их в разные стороны, приводят пузырёк уровня в нуль-пункт. Затем поворачивают алидаду на 90º и третьим подъёмным винтом снова приводят пузырёк в нуль-пункт.

Фокусирование зрительной трубы выполняют “по глазу” и “по предмету”. Фокусируя “по глазу”, вращением диоптрийного кольца окуляра добиваются четкого изображения сетки нитей. Фокусируя “по предмету”, вращая рукоятку кремальеры, добиваются четкого изображения наблюдаемого предмета. Фокусирование должно быть выполнено так, чтобы при покачивании головы наблюдателя изображение не перемещалось относительно штрихов сетки нитей.

Измерение угла способом приемов. Прием состоит из двух полуприемов. Первый полуприем выполняют при положении вертикального круга слева от зрительной трубы. Закрепив лимб и открепив алидаду, наводят зрительную трубу на правую визирную цель. После того как наблюдаемый знак попал в поле зрения трубы, зажимают закрепительные винты алидады и зрительной трубы и, действуя наводящими винтами алидады и трубы, наводят центр сетки нитей на изображение знака и берут отсчёт по горизонтальному кругу. Затем, открепив трубу и алидаду, наводят трубу на левую визирную цель и берут второй отсчёт. Разность первого и второго отсчётов даёт величину измеряемого угла. Если первый отсчёт оказался меньше второго, то к нему прибавляют 360º.

Второй полуприем выполняют при положении вертикального круга справа, для чего переводят трубу через зенит. Чтобы отсчёты отличались от взятых в первом полуприеме, смещают лимб на несколько градусов. Затем измерения выполняют в той же последовательности, как в первом полуприеме.

Если результаты измерения угла в полуприёмах различаются не более двойной точности прибора (то есть 1¢ для теодолита Т30), вычисляют среднее, которое и принимают за окончательный результат.

Понятие об измерении способом круговых приемов нескольких углов, имеющих общую вершину. Одно из направлений принимают за начальное. Поочередно, по ходу часовой стрелки, при круге слева наводят трубу на все визирные цели и берут отсчеты. Последнее наведение вновь делают на начальное направление. Затем, переведя трубу через зенит, вновь наблюдают все направления, но в обратном порядке – против часовой стрелки. Из отсчетов при круге слева и круге справа находят средние и вычитают из них среднее значение начального направления. Получают список направлений – углов, отсчитываемых от начального направления.

Существует несколько способов измерения горизонтальных углов: способ приемов, способ круговых приемов, способ повторений, способ всех комбинаций. Наиболее простым и распространенным является способ приемов. Способ круговых приемов используется тогда, когда на одной точке требуется измерить несколько углов. Способ повторений рекомендуется использовать, если точность теодолита недостаточна и требуется измерить угол с более высокой точностью. Измерение горизонтального угла способом повторений может быть выполнено только повторительным теодолитом. Способ комбинаций характеризуется трудоемкостью и применяется только при высокоточных измерениях нескольких углов в одной точке, когда ошибки измерения углов должны находиться в пределах 1".

Измерение угла способом приемов состоит в его измерении двумя полуприемами. Каждый полуприем заключается в выполнении следующих действий:

  • 1) наведение вертикальной нити сетки нитей на правую визирную цель;
  • 2) взятие отсчета я, по горизонтальному кругу;
  • 3) запись в журнал отсчета я,;
  • 4) наведение вертикальной нити сетки нитей на левую визирную цель;
  • 5) взятие отсчета Ь ] по горизонтальному кругу;
  • 6) запись в журнал отсчета Ь{,
  • 7) вычисление значения горизонтального угла = а { - Ь { .

Визирные цели представляют собой

Вид сверху

Рис. 5.11. Визирный цилиндр

предмет или устройство, на которое наводят зрительную трубу. При наблюдении на пункты триангуляции визирной целью обычно является малофазный визирный цилиндр (рис. 5.11) геодезического знака. На данном рисунке представлено изображение, видимое в поле зрения трубы теодолита с прямым изображением. Вертикальную нить сетки нитей при этом наводят на воображаемую ось симметрии визирного цилиндра. При наблюдении на точки теодолитного хода в качестве визирных целей используют вертикально устанавливаемые на этих точках вехи или шпильки из комплекта мерного прибора для измерения расстояний.

После измерения угла первым полуприемом изменяют положение лимба. Изменить положение лимба горизонтального угломерного круга можно двумя способами:

  • 1) сделать 2-3 оборота наводящим винтом лимба, положение лимба при этом может измениться на 2-3°;
  • 2) при закрепленном закрепительном винте алидады открепить закрепительный винт лимба, повернуть лимб на произвольный угол (рекомендуется примерно на 90°), закрепить закрепительный винт лимба.

После выполнения описанных действий трубу переводят через зенит и выполняют измерение угла вторым полуприемом (при другом положении вертикального круга). Вычисление значения горизонтального угла из второго полуприема осуществляется аналогичным образом:

Р2 = я2 - Ь2.

Таким образом, угол будет измерен дважды. Результаты измерения угла двумя полуприемами соответственно равны р| и р 2 . Р ас_

хождение значений угла из двух полуприемов не должно превышать удвоенной погрешности измерения угла данным теодолитом, т.е. должно выполняться условие

где t - среднеквадратическая погрешность измерения угла одним приемом. Для теодолита 2Т30 данный допуск составляет Г.

Измерение углов двумя полуприемами осуществляется в целях:

  • 1) контроля измерений ;
  • 2) повышения точности измерений: ошибка среднего значения из нескольких измерений всегда меньше ошибки отдельного измерения.

Результаты измерения горизонтальных углов фиксируются в соответствующем журнале (табл. 5.1).

Таблица 5.1

Журнал измерения горизонтальных углов

по горизонтальному

Значение

в полуприеме

значение

При измерении горизонтальных углов важно понимать различие между наводящими винтами лимба и алидады. При вращении любого из этих винтов зрительная труба поворачивается в горизонтальной плоскости, или, как говорят, «по горизонту». Хотя со стороны действия наблюдателя при этом кажутся совершенно одинаковыми, различие между ними принципиальное. Если лимб закреплен и наведение зрительной трубы на различные точки осуществляется только с помощью винтов алидады, то отсчеты будут различаться, так как лимб при этом остается неподвижным. Если действовать противоположным образом, т.е. закрепить алидаду, и при наведении трубы на различные точки использовать только винты лимба, отсчет на любые точки будет один и тот же, так как лимб и находящаяся на нем алидада со зрительной трубой будут поворачиваться вместе с лимбом как единое целое. Отсюда следует, что если при измерении горизонтального угла трубу навели на правую точку и взяли отсчет, а при наведении на левую точку случайным образом повернули наводящий или закрепительный винт лимба, то дальнейшие действия выполнять не имеет смысла, так как нулевой диаметр горизонтального круга изменит свое положение. И в таком случае необходимо начинать выполнение полуприема заново. Путаница между винтами лимба и винтами алидады является наиболее распространенной ошибкой начинающих изучение теодолита.

Если точность измерения углов одним приемом с помощью имеющегося теодолита несколько ниже требуемой, то возможны два варианта действий:

  • воспользоваться теодолитом более высокой точности;
  • измерять угол не одним приемом, а п приемами. Тогда в качестве окончательного значения угла берется среднее из п приемов, среднеквадратическая погрешность М измерения угла при этом будет равна

где т - среднеквадратическая погрешность измерения угла одним приемом.

Следует обратить внимание, что погрешность многократного измерения угла убывает пропорционально квадратному корню из числа измерений. Например, чтобы уменьшить ошибку измерения угла в 3 раза, необходимо измерить угол девятью приемами. Поэтому многократное измерение угла в целях повышения точности измерений оправдано только тогда, когда требуемая точность незначительно отличается от точности используемого прибора.

Основным параметром, контролируемым при обработке углов и конусов, является плоский угол, за единицу которого принят градус. Градусом называется 1/360 часть окружности, он состоит из 60 угловых минут, а минута состоит из 60 угловых секунд. Особенность угловых размеров состоит в том, что точность их изготовления и контроля зависит от длины сторон, образующих угол. Чем короче сторона, тем труднее изготовить и измерить угол. Методы измерения углов можно разделить на три основных вида:

1) метод сравнения с жесткими угловыми мерами;

2) абсолютный метод, основанный на применении измерительных инструментов с угловой шкалой (угол при этом отсчитывают непосредственно по шкале прибора в угловых единицах);

3) косвенный метод, состоящий в измерении линейных размеров, связанных с углом конуса тригонометрическими зависимостями.

Угловые меры и угольники

Угловые меры (рис. 1.19, а) изготавливают в виде прямых призм и применяют для контроля углов и градуировки угломерных инструментов и угловых шаблонов. Угловые меры аналогичны рассмотренным ранее плоскопараллельным концевым мерам длины. Угловые меры выпускают в виде наборов с градацией углов через 2°, 1°,15′ и различными номинальными значениями углов. Изготавливают угловые меры четырех классов точности (00, 0, 1, 2) и аттестуют на разряды. Угловые меры могут притираться друг к другу, но их сцепление менее надежно, чем у плоскопараллельных концевых мер длины, поэтому блоки угловых мер соединяют друг с другом при помощи специальных приспособлений. Плитки в блоки соединяют при помощи державок (рис. 1.19, б-г), винтов и конических штифтов. Державки (см. рис. 1.19, б, в) позволяют собирать блоки из двух и трех угловых мер. Для получения дополнительных углов применяют державки со специальными лекальными линейками (см. рис. 1.19, г). Контроль углов угловыми мерами производят обычно на просвет. В случае отсутствия угловой меры с необходимыми значениями угла или в случае, когда изделие не позволяет использовать угловую меру, изготавливают специальный угловой шаблон.

Для контроля и разметки прямых углов (90 °) предназначены проверочные угольники (рис. 1.20), которые применяют также для контроля взаимного расположения поверхностей деталей при сборке. Изготавливают угольники следующих типов УЛ, УЛП, УЛШ, УЛЦ, УП, УШ.

Угольники типов УЛ, УЛП и УЛШ предназначены для точных лекальных работ, они имеют две острые рабочие грани.

Угольники типа УП и УШ используют при слесарной сборке, обработке и ремонте.

Угольники типа УЛЦ представляют собой отрезок вала с торцами, перпендикулярными образующей цилиндрической поверхности. Эти угольники используют для проверки других угольников, так как они позволяют получить точное значение угла 90°.

Угломеры

Для контроля углов методом непосредственной оценки в машиностроении широко применяют угломеры с нониусом . Эти угломеры выпускают двух типов: УН — для измерения наружных и внутренних углов (рис. 1.21, а) и УМ — для измерения только наружных углов (рис. 1.21, б).

Угломер типа УН состоит из основания 2 с нанесенной по окружности градусной шкалой, которое жестко соединено с линейкой 3. Линейка имеет снаружи доведенную измерительную поверхность. По основанию 2 перемещается сектор 5 с нониусом 1 и стопором 4. К сектору крепят угольник 6 при помощи державки 9. К угольнику 6 крепят съемную линейку 7 при помощи державки 8. Варианты измерений показаны на рис. 1.22. Угломер позволяет измерять углы в диапазоне от 0 до 50° (рис. 1.22, а). Для измерения углов в диапазоне от 50 до 140° с угломера снимают угольник, а на его место устанавливают линейки (рис. 1.22, б). Чтобы измерить наружные углы в диапазоне от 140 до 230°, необходимо снять линейку, измерения в этом случае ведут с использованием угольника. Если с угломера снять угольник, линейку и державки, то с его помощью можно будет контролировать размеры углов в диапазоне от 240 до 320°. Следовательно, общий диапазон измерений угломером УН составляет от 0 до 320 ° для наружных углов.

При измерении углов деталей сложных контуров необходима установка угломера на заданную величину длины прямолинейного контура. Такая установка осуществляется при помощи блока концевых мер длины 2, который устанавливается на съемную линейку 3, а основание угломера перемещают по угольнику 1 так, чтобы измерительная линейка была установлена на блоке концевых мер. Схема такой установки приведена на рис. 1.22, в.

Если с угломера снять угольник и линейку, то им можно измерять внутренние углы в диапазоне от 40 до 180° (рис. 1.22, г).

Измерение углов в труднодоступных местах производят по схеме, показанной на рис. 1.22, д.

Угломер типа УМ (см. рис. 1.21, б) широко применяется при обучении слесарному делу. Он состоит из основания 4 со шкалой, проградуированной в градусах. На основании закреплена линейка 3. Подвижная линейка 10 с сектором 9 и нониусом 7 может поворачиваться на оси А, фиксация линейки в момент измерения осуществляется стопорным винтом 5. Угломер имеет винт 6 для микрометрической подачи измерительной подвижной линейки 10 с сек- , тором 9. На подвижной линейке крепится угольник 2 при помощи державки 1. Угломер обеспечивает измерение углов в диапазоне от О до 180°. Для измерения углов свыше 90° угольник 2 необходимо снять, в этом случае для получения значения угла к показаниям по шкалам угломера прибавляют 90°.

При работе с угломером типа УМ необходимо:

Определить способ измерения угла (с использованием угольника или без него);

Убедиться в плавности перемещения сектора угломера;

Убедиться в точности установки угломера на ноль;

При измерении прочно удерживать угломер за корпус;

Измерительная поверхность должна плотно прилегать к поверхности детали (без просвета и перекоса);

Обратить внимание на достигаемую точность измерений, которая выбита на нониусе.

Для контроля углов применяют различные средства: угольники, угловые меры, конические калибры, угломеры, механические и оптические делительные головки, гониометры, синусные линейки и др. Угольники, калибры и угловые меры являются жесткими контрольными инструментами, они имеют определенные значения углов. Угольники подразделяются на цельные (рис. 28, а) и составные (рис. 28, б). Угловые меры – плитки (рис. 28, в) выпускаются наборами с таким расчетом, чтобы из трех – пяти мер можно было составлять блоки в пределах от 10 до 90 0 ; их изготовляют в виде плиток толщиной 5 мм с точностью угла (1-й класс) и (2-й класс). Они имеют или один рабочий угол или четыре рабочих угла: .

Угловые меры в основном применяют для поверки и градуировки различных средств измерения углов , но они могут применяться и непосредственно для измерения углов у деталей машин.

Для измерения углов у деталей чаще всего пользуются универсальными угломерами: нониусными с величиной отсчета , оптическими с величиной отсчета , индикаторными с величиной отсчета .


Рис. 28. Виды жестких измерительтельных средств:

а – цельный угольник, б – составной, в – угловая мера.

Угломер с нониусом (рис. 29) состоит из трех основных частей: жестко скрепленных линейки 1 и лимба 2 , который имеет полукруглую форму; жестко скрепленных линейки 5 с сектором 3 и дополнительного угольника 6 , которым пользуются при измерении острых


углов (менее 90 0). Линейка 5 вращается на оси 4 , связанной с лимбом. На дуге лимба 2 нанесена шкала с ценой деления 1 0 , а на дуге сектора 3 – нониус, который дает возможность отсчитывать дробные части шкалы.

Рис. 29. Нониусный угломер.

Для измерения острых углов (менее 90 0) к линейке 5 присоединяют дополнительный угольник 6 .

Нулевой штрих нониуса показывает число градусов, а штрих нониуса, совпадающий со штрихом шкалы лимба 2 , - число минут.

При измерении тупых углов (более 90 0) дополнительный угольник 6 не нужен, но в этом случае к показаниям, снятым по шкале, необходимо еще прибавлять 90 0 .

Находят применение также оптические угломеры, имеющие две линейки и корпус, в котором размещен стеклянный диск со шкалой, разделенной на градусы и минуты.


Рис. 30. Схема измерения угла конуса на синусной линейке.

Отчет производится после того, как положение угломера зафиксировано зажимным рычагом.

Косвенные методы контроля конусов . Наиболее точными и широко применяемыми являются косвенные методы измерений, при которых измерят не непосредственно углы конусов, а линейные размеры, геометрически связанные с углами.

После определения значения этих линейных размеров расчетом находят и значения углов.

Измерение с помощью линейки . Синусные линейки, выпускаемые инструментальной промышленностью, делятся на три типа: тип I – без опорной плиты, тип II – с опорной плитой, тип III – с двумя опорными плитами и двойным наклоном.

Предметный столик 1 (рис. 30 ) синусной линейки имеет два ролика 2 и 3 с определенным расстоянием между ними L . Если под одним из роликов подложить блок 4 из плоскопараллельных концевых мер размером h , то предметный столик наклонится на угол и его можно определить по формуле:

.

При измерении угла конуса проверяемое изделие устанавливают на предметный столик, ориентируя его так, чтобы измеряемый угол находился в плоскости, перпендикулярной роликам синусной линейки (для этого используют боковые поверхности предметного столика). Установив изделие 5 на предметный столик 1, под ролик подкалывают блок из плоскопараллельных концевых мер 4. Размер блока определяют по формуле

,

где - номинальное значение измеряемого угла.

При разности показаний измерительной головки 6 в двух положениях на измеряемой длине можно определить отклонения измеряемого угла () от номинального значения по формуле

.

Действительную величину угла можно определить, подобрав такой блок плиток, при котором показания измерительной головки не будет отличаться на всей измеряемой длине.

Измерение наружных конусов с помощью роликов . Этот косвенный метод измерения (рис. 31 ) угла конуса изделия 1 осуществляется при использовании плиты 2, двух роликов 3 одинакового размера (можно использовать ролики от роликовых подшипников), концевых мер 4 и микрометра с ценой деления 0,01 мм или рычажного с ценой деления 0,002 мм .


Рис. 31. Схемы измерения угла конуса с помощью калиброванных

роликов (а, б),колец (в), шариков (г).

Сначала измеряют размер по диаметрам роликов 3 (рис. 31,а ), затем под ролики подкладывают блоки из концевых мер 4 одинакового размера и определяют размер (рис. 31,б ). Зная размеры , , находят конусность по формуле

или ,

По такому же принципу измеряют конусность у вала с помощью двух калиброванных колец (рис. 31,в ) с заранее известными диаметрами D и d и толщиной . После надевания колец на конус вала измеряют размер H и определяют тангенс угла по формуле

.

Измерение внутренних конусов . Угол внутреннего конуса определяют с помощью двух шариков, диаметры которых заранее известны, и глубиномера (рис. 31,г ).

Втулку 1 ставят на плиту 2, закладывают внутрь шарик малого диаметра d и измеряют при помощи глубиномера (микрометрического или индикаторного) размер , затем закладывают шарик большего диаметра D и измеряют размер . При таком методе измерения конусность втулки определяют по формуле:

.

Контроль конусов калибрами

Контроль калибрами (рис. 32) основан на проверке отклонений базорасстояния по методу осевого перемещения калибра относительно проверяемой детали или на проверке по краске.


Рис. 32. Конусные калибры:

а – втулка, б – пробка, в – скоба.

Калибрами для проверки наружных конусов служат втулки (рис. 32, а ) или скоба (рис. 32, в ), а для внутренних конусов – пробки (рис. 32, б ), со стороны большого диаметра которых наносятся риски на расстоянии от торца калибра, равном допуску базорасстояния .

Торец проверяемых конических вала и втулки при сопряжении с калибром не должен выходить за пределы рисок или уступа на калибре. Если это условие нарушено, то угол конуса выходит из установленных пределов (допуска).

Конусные калибры – втулки проверяют по контрольным калибрам – пробкам. Контрольные калибры изготовляют с повышенной точностью конусности и проверяют универсальными средствами.

Вопросы для повторения:

1. Сколько степеней точности установлено для допусков на угловые размеры и почему допуск на угол уменьшается с увеличением длины меньшей стороны угла?

2. Назовите примеры применения конических соединений и их преимущества в сравнении с цилиндрическими соединениями.

3. Начертите конус и покажите основные параметры его.

4. Что называется базорасстоянием и в какой зависимости находится изменение его величины от допусков на диаметры конуса и конусности?

5. Как устроен угломер с нониусом и какие углы им можно измерять?

6. Расскажите о косвенных методах измерения угла наружного и внутреннего конусов.

7. Как осуществляется контроль наружных и внутренних конусов коническими калибрами?

Литература:


Лекция 7 . ДОПУСКИ, ПОСАДКИ И СРЕДСТВА ИЗМЕРЕНИЯ

РЕЗЬБОВЫХ СОЕДИНЕНИЙ

Основные элементы метрической крепежной резьбы

и допуски на них

В машиностроении применяют различные резьбовые соединения: цилиндрические, конические, трапецеидальные и др. Эти резьбы имеют ряд общих признаков, а так как наиболее распространенными являются цилиндрические крепежные резьбовые соединения с треугольным профилем, то применительно к ним и будут рассмотрены допуски, методы и средства контроля.



Профиль метрической цилиндрической резьбы (рис. 33, а) представляет собой равносторонний треугольник с углом при вершине , равным 60 0 . Основными параметрами резьбы, общими для наружной резьбы (болта) и внутренней резьбы (гайки), являются: наружный диаметр и , внутренний диаметр и , средний диаметр и , шаг резьбы , угол профиля , угол между стороной витка и перпендикуляром к оси резьбы , теоретическая высота витка , рабочая высота витка резьбы . При измерении угла профиля и расчетах допусков учитывается угол , так как при нарезании резьбы ее профиль может быть завален на сторону так, что с правой стороны будет больше или меньше, чем с левой стороны, а в целом весь угол профиля может быть равен 60 0 .

Рис. 33. Метрическая цилиндрическая резьба:

а – профиль резьбы, б – схема расположения полей допусков.

Под средним диаметром понимают диаметр воображаемого, соосного с резьбой, цилиндра, который делит профиль резьбы так, что толщина витка, ограниченная на рис. 33, а буквами а – б, равна ширине впадины, ограниченной буквами б – в . Шаг резьбы – это расстояние вдоль оси резьбы между параллельными сторонами двух рядом лежащих витков.

Единой системой допусков и посадок СЭВ для метрической резьбы с размерами от 0,25 до 600 мм предусмотрены три стандарта: СТ СЭВ 180-75 определяет профиль резьбы; СТ СЭВ 181-75 – диаметры и шаги; СТ СЭВ 182-75 – основные размеры. Предельные отклонения и допуски резьбовых соединений с зазорами устанавливает СТ СЭВ 640-77.

Значения диаметров резьбы разбиты на 3 ряда (1, 2 и 3-й). При выборе диаметров резьбы предпочтительным является первый ряд. Второй ряд диаметров резьбы берется, если диаметры 1-го ряда не удовлетворяют требованиям конструктора; в последнюю очередь диаметры берутся из 3-го ряда. По числовой величине шага резьбы для диаметров 1-64 мм делятся на две группы: с крупным шагом и мелкие, а резьбы диаметром свыше 64 мм , (до 600 мм ) имеют только мелкие шаги.


Допуски для цилиндрической крепежной резьбы () установлены на следующие параметры: на средний диаметр болта и гайки в виде величин и , (поле допуска для гайки расположено в плюс, а для болта – в минус от номинального размера); на наружный диаметр болта и на внутренний диаметр гайки .

Допуски на наружный диаметр гайки и внутренний диаметр болта не установлены. Технология нарезания резьбы и размеры резьбообразующих инструментов (метчиков, плашек и др.) гарантируют, что наружный диаметр резьбы гайки не будет меньше теоретического, а внутренний диаметр резьбы болта – больше теоретического.

На шаг резьбы и угол профиля в отдельности допуски не установлены, а возможные отклонения по ним допускаются за счет изменения среднего диаметра резьбы в пределах его допуска. Такая компенсация погрешностей шага и угла за счет допуска , возможна потому, что шаг и угол геометрически связаны со средним диаметром.

© 2024 softlot.ru
Строительный портал SoftLot