Методы и средства гидрометеорологических измерений метеорологические приборы. Рабочая учебная программа дисциплины «Методы и средства гидрометеорологических измерений

Метеорологические величины

Метеорологическими величинами являются:
температура, давление, влажность, скорость и направление ветра, количество осадков, высота нижней границы облаков, мощность (толщина) облачного слоя и.т.д.

Рассмотрим основные метеорологические величины, характеризующие состояние воздуха, атмосферных процессов и радиационного режима, уделяя особое внимание единицам, точности измерения и обработки.
Используя понятие о точности измерений как наименьшем значении, которое можно определить с уверенностью в правильности получаемых результатов. Основанием для такой уверенности служит оценка погрешностей.
Температура (t,T) является характеристикой теплового состояния тел. При метеорологических наблюдениях она выражается в градусах Цельсия (t°C). Для оценок термодинамического состояния системы используется термодинамическая температурная шкала Кельвина (T, K). Обе шкалы характеризуют эквивалентное изменение теплового состояния тел при изменении температуры на равное количество градусов, но имеют различные значения начала отсчета, соответствующие нулю шкалы. Переход от шкалы Цельсия к шкале Кельвина прост: T K=273,15+t°C. Следует различать используемые в метеорологии значения температуры, характеризующие тепловое состояния среды(температура воздуха, почвы, воды), и температуры, зависящей от дополнительных условий формирования теплового баланса резервуара термометра, например смоченного в психрометре, радиационно-эффективной; либо температуры, являющейся фиктивной и не измеряемой (виртуальная, потенциальная и т. п.).
В настоящее время в практической метеорологии при стандартных сетевых измерениях температура определяется с точностью до 0,1°C. Исключением является измерения температуры с помощью дистанционной метеорологической станции (ДМС) и регистрации термографом, где точность составляет 1°C.
Атмосферное давление (р).
За единицу атмосферного давления принимается такое равномерно распределенное давление, при котором на единицу поверхности приходиться единица силы. Единицей давления является паскаль (Па). 1Па=1Н/м 2 .
Атмосферное давление удобнее выражать в гектопаскалях (гПа). Гектопаскаль эквивалентен миллибару,однако последний (как и миллиметр ртутного столба) является внесистемной единицей и в современной литературе не употребляется. Атмосферное давление определяется с точностью до 0,1гПа.
Влажность воздуха,
характеризуется парциальным давлением водяного пара (e), выражается в тех же единицах, что и атмосферное давление с точностью до 0,1гПа. В этих же единицах выражается дефицит влажности.
Относительная влажность воздуха (f) - отношение фактической влажности насыщения при той же температуре. Вычисляется до целых процентов. Большей точности определения относительной влажности не могут обеспечить и ее прямые измерения с помощью гигрометров.
Абсолютная влажность воздуха (a), плотность водяного пара, выражается с точностью до 0,1 г/м 3 .
Удельная влажность (q) - массовая доля водяного пара - отношение плотности водяного пара p к плотности влажного воздуха r в этом же объеме. Отношение смеси (m) - отношение массы водяного пара к массе сухого воздуха в том же объеме. Удельная влажность и отношение смеси определяются с точностью до 0,0001.
Скорость ветра (u) измеряется с помощью анеморумбометра с точностью до 1м/с и до 0,1м/с с помощью ручных анемометров.
Направление ветра по анеморумбометру определяется в углах геодезического азимута с точностью до 5°. Направление ветра по флюгеру определяется с точностью до румба.
Осадки измеряются с точностью до 0,1 мм слоя воды.
Количество облаков - определяется в баллах с точностью до 1 балла, а в долях единицы - 0,1.
Метеорологическая дальность видимости оценивается в баллах или в километрах до (0,1 км).
Продолжительность солнечного сияния по гелиографу или иным самописцам определяется с точностью до 5 минут.
Время начала и конца атмосферных явлений фиксируется наблюдателем с точностью до целых минут.
Единицей измерения мгновенных значений радиационных потоков, т.е. их поверхностной плотности, является ватт на квадратный метр (Вт/м 2) . При актинометрических измерениях радиационные потоки определяются с точностью до 10Вт/м 2) . Часовая и суточная сумма радиационных потоков выражаются мегаджоулях на квадратный метр (МДж/м 2). Стандартные актинометрические измерения обеспечивают определение часовых и суточных потоков определяются с точностью до целых, а годовые - до десятков МДж/м 2 .
Для вычисления высоты Солнца над горизонтом h или зенитного расстояния Z время наблюдения фиксируется с точностью до 1 минуты. Высота, зенитное расстояние и часовой угол Солнца вычисляются или измеряются с точностью до 0,1° . Важно помнить, что азимут светила в актинометрии, как и астрономии, отсчитывается от максимальной точки стояния светила, то есть в Северном полушарии он отличается от геодезического на 180°, так как отсчитывается также по часовой стрелке, но от направления юга. Оптические характеристики атмосферы - коэффициент прозрачности, фактор мутности, оптическая толщина и оптическая плотность вычисляются с точностью до 0,01 .

По учебнику "Физическая метеорология"
Б.А. Семениченко

Факультет заочного обучения

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по дисциплине

“МЕТОДЫ И СРЕДСТВА

для высших учебных заведений

Квалификация (степень)

Бакалавр


Санкт–Петербург



П Р Е Д И С Л О В И Е

первой части второй части



ОБЩИЕ УКАЗАНИЯ

свои

ЛИТЕРАТУРА



Основная

.


Дополнительная

.

УКАЗАНИЯ ПО РАЗДЕЛАМ

Введение

цели измерений.

Л и т е р а т у р а

Раздел 1.1.

Вопросы для самопроверки

Измерение температуры

Этот раздел начинается с изучения тепловой инерции термометров – общего свойства для всех термометров, имеющих термометрическое тело. Изучите вывод уравнения, описывающего тепловую инерцию. Запомните определение коэффициента тепловой инерции термометра. Для выполнения контрольной работы преобразуйте формулу для коэффициента тепловой инерции ртутного термометра, имеющего шарообразный резервуар, к виду:


где λ – коэффициент тепловой инерции термометра, T 0 – температура термометра в начальный момент времени, θ – температура окружающей среды, ΔТ – допустимая погрешность в определении температуры.

Далее переходите к изучению основных типов термометров. Изучаются термометры сопротивления, термоэлектрические термометры, деформационные термометры, акустические термометры и радиационные термометры. Изучение каждого типа термометров проводится в следующем порядке – сначала изучается принцип действия, затем чувствительность и способы её увеличения, затем – специфические погрешности прибора и способы их устранения или уменьшения.

Л и т е р а т у р а

Вопросы для самопроверки

1. Чем обусловлена тепловая инерция термометров?

2. Какие типы термометров являются безинерционными?

3. Какие методы измерения температуры Вы знаете:

4. Предложите метод измерения температуры поверхности земли с искусственного спутника.

5. Почему в радиационных термометрах используется ИК диапазон?

6. Выведите уравнения чувствительности уравновешенного термометра сопротивления.

Измерение влажности воздуха

Перед началом изучения этого раздела повторите все параметры, характеризующие содержание в воздухе водяного пара. Далее составьте список основных методов измерения влажности и приступайте к их изучению. При изучении психрометрического метода измерения влажности обратите внимание на зависимость психрометрического коэффициента от скорости ветра. Рассмотрите схему конденсационного гигрометра (рис. 2.5. ). Свяжите эту схему с общей схемой следящей системы (рис.1.13 ). Далее изучите деформационный гигрометр, приведите примеры его использования. Электрохимический, сорбционный и радиационный гигрометр изучаются студентами ФЗО без вывода формул чувствительности. Рассмотрите принцип действия, достоинства и недостатки конденсаторного гигрометра (разд.2.8 ).

Л и т е р а т у р а

Лекции по теме «Измерение влажности».


Вопросы для самопроверки

1. Какими параметрами характеризуется содержание водяного пара в воздухе?

2. Почему температура смоченного термометра, как правило, меньше температуры сухого термометра?

3. Что такое идеальный психрометр? Как его изготовить?

4. Объясните принцип действия конденсационного гигрометра. Какие величины необходимо измерить для определения влажности с его помощью?

5. Какой из изученных Вами методов измерения влажности является самым чувствительным?

6. Объясните принцип действия конденсаторного гигрометра, перечислите его достоинства и недостатки.

7. Какие методы измерения влажности применяются в оперативной работе на метеорологической сети?

Измерение параметров ветра

При изучении методов измерения скорости ветра важно понять, что известные Вам ротоанемометры не являются единственными приборами для измерения скорости ветра. Тем не менее, изучение этого раздела начинается с изучения теории ротоанемометра. Этот раздел содержит самый сложный во всем курсе математический вывод! Внимательно ознакомьтесь с выводом уравнения движения ротоанемометра для установившегося и для неустановившегося состояния. Обратите внимание на такие понятия, как пороговая скорость и путь синхронизации ротоанемометра. Далее изучаются три типа ротоанемометров – индукционный, импульсный (контактный) и фотоэлектрический. Обратите внимание, что существуют две конструкции индукционных ротоанемометров: дистанционный и ручной анемометр АРИ-49.

Из других способов измерения скорости ветра студенты изучают акустический метод и лазерный доплеровский измеритель скорости.

При изучении методов измерения направления ветра главное внимание уделяется флюгарке – основному датчику направления ветра. Обратите внимание на методы дистанционной передачи информации об угле поворота флюгарки – использование сельсинов (автосинов), и фазоимпульсный метод.


Л и т е р а т у р а

Лекции по теме «Измерение влажности воздуха».

Вопросы для самопроверки

1. Выведите уравнение ротоанемометра для установившегося и неустановившегося состояния.

2. Почему ротоанемометр дает завышенные показания средней скорости ветра?

3. Какой тип модуляции используется в индукционном ротоанемометре? А в контактном?

4. Какая величина характеризует инерцию ротоанемометра?

5. Укажите безинерционные способы измерения скорости ветра.

6. В чем состоит принцип лазерного доплеровского анемометра?

7. Укажите достоинства и недостатки лазерного доплеровского анемометра. В каких случаях его целесообразно использовать?

Актинометрические измерения

Изучение раздела начинается с перечисления актинометрических величин, подлежащих измерению и обоснованию выбора калориметрического метода измерения. Уясните для себя смысл актинометрических величин – прямой солнечной радиации, рассеянной радиации и радиационного баланса. Далее переходите к изучению приборов для измерения этих величин. Для измерения прямой солнечной радиации применяются два прибора – компенсационный пиргелиометр и термоэлектрический актинометр. Обратите внимание, что пиргелиометр является абсолютным, а актинометр – относительным прибором. Для измерения рассеянной радиации применяется пиранометр. При изучении пиранометра обратите внимание на зависимость переводного множителя от зенитного угла Солнца.

Далее изучите измерение радиационного баланса. Выведите уравнение балансомера и поясните, как устраняется ветровая погрешность балансомера. При изучении теории балансомера обратите внимание, какие из радиационных потоков, указанных на рис. 5.9 в книге отсутствуют в ночное время суток и при облачной погоде.

Л и т е р а т у р а

Лекции по теме «Актинометрические измерения».

Вопросы для самопроверки

1. Чем обусловлен выбор калориметрического метода для актинометрических измерений?

2. Что такое абсолютные и относительные приборы? К какому типу относится каждый из изученных Вами актинометрических приборов?

3. Что такое переводной множитель для актинометрических приборов? Какова его размерность?

4. В какой области длин волн рассеянная радиация имеет максимум?

5. Почему при изготовлении балансомера его толщина выбрана малой?

6. Как измерить рассеянную радиацию в условиях ясной погоды?

Факсимильная аппаратура.

После измерения всех метеопараметров на метеостанциях составляются специальные телеграммы, которые передаются в единый центр. На территории России этот центр находится в Москве. Здесь составляются карты погоды, затем эти карты передаются всем потребителям с помощью факсимильных аппаратов. Студенты должны изучить основные блоки факсимильной аппаратуры и знать принцип её работы. Изучите основные характеристики и параметры, которыми оценивается эффективность работ факсимильной аппаратуры. Изучается также схема основных блоков приемного и передающего факсимильного аппаратов. При этом изучаются лишь основные блоки, универсальные для всех факсимильных аппаратов, без привязки к какому-нибудь одному типу.

Л и т е р а т у р а

Разд.9.1, 9.2.

Вопросы для самопроверки

1. Что такое разрешающая способность факсимильных аппаратов?

2. Как связаны между собой разрешающая способность и скорость передачи?

3. Что такое синхронизация и фазирование в факсимильных аппаратах?

КОНТРОЛЬНАЯ РАБОТА

Общие указания

Рекомендуется выполнять задания контрольной работы после проработки соответствующих разделов рекомендованной литературы или после прослушивания лекций-вебинаров. При выполнении работ студент обязан дать четкие, ясные ответы на все поставленные вопросы и решить все поставленные задачи. Необходимо максимально иллюстрировать свою работу рисунками, графиками и схемами. Каждое утверждение должно быть доказано, каждая величина, указанная в формулах должна быть пояснена в тексте. Не допускается прямое переписывание текста учебников. При выполнении контрольной работы желательно ссылаться на примеры из Вашего собственного опыта работы. Очень желательно привести Ваше мнение о работе приборов, которые Вы описываете в тексте контрольных работ.

Объем контрольной работы составляет 20 – 25 страниц рукописного текста с учетом рисунков. Контрольные работы присылаются в Университет во время учебного года или сдаются в ФЗО перед сессией.

Задание 1

Поясните смысл понятия «коэффициент тепловой инерции термометра». Выведите формулы (1) и (2), приведенные в разделе 2 на с. 7 настоящего «Методического Указания».

Задание 2

Радиус шарообразного резервуара ртутного термометра равен R, температура окружающей среды равна θ, начальная температура термометра равна T o , а погрешность измерений не должна превышать ΔT. Пользуясь формулами (1) и (2), рассчитайте коэффициент тепловой инерции термометра и время его выдержки в окружающей среде перед снятием показаний. Варианты задачи сведены в таблицу 1. Требуемый вариант определяется начальной буквой фамилии студента. Так, например, вариант первый должны выполнять студенты, фамилии которых начинаются с букв от А до Д, вариант второй – от Е до К и т.д.

Таблица 1

Исходные параметры В а р и а н т ы
А - Д Е - К Л - П Р - Ф Х - Я
R, мм 1,5 2,0 2,5 3,0 3,5
θ, К
T o , К
ΔT, К 0,1 0,2 0,1 0,2 0,1

Задание 3

Опишите принцип действия уравновешенного и неуравновешенного термометров сопротивления. Приведите соответствующие схемы с пояснениями. Что Вы понимаете под чувствительностью этих приборов? Перечислите погрешности уравновешенного и неуравновешенного термометров сопротивления и способы уменьшения этих погрешностей.

Задание 4

Опишите принцип действия психрометра. Как Вы понимаете термин «идеальный психрометр»? Как изготовить психрометр, близкий по своим свойствам к идеальному?

Задание 5

Какими параметрами характеризуется эффективность работы ротоанемометров? Что следует понимать под чувствительностью ротоанемометра? Каким параметром характеризуется инерция ротоанемометра? Приведите примеры ротоанемометров, использующихся в метеорологических приборах.

Задание 6

Опишите устройство и принцип действия актинометра, пиранометра и балансомера. Дайте определение понятию «радиационный баланс».

Задание 7

Опишите устройство светолокационного измерителя высоты облачности ИВО-1м. Нарисуйте блок-схему прибора ИВО-1м с пояснением функции каждого блока прибора.

Задание 8

Опишите устройство прибора ФИ-1 для измерения метеорологической дальности видимости. Какие особенности прибора ФИ-1 позволяют вести измерения в дневное время суток? Почему дневной свет, попадающий на фотоприемник ФИ-1, не мешает измерениям?

Для чего в импульсном фотометре используются два отражателя? При каких погодных условиях используется дальний или ближний отражатель?

Задание 9

Что Вы понимаете под термином «информационно-измерительная метеорологическая система»? Какие особенности станции КРАМС позволяют отнести её к ИИМС? Изобразите блок-схему станции КРАМС (КРАМС-М, или КРАМС-2 илиКРАМС-4) и поясните её, следуя книге и .

Задание 10

Какие особенности лазеров делают их особенно привлекательным инструментом для метеорологических измерений? Какие атмосферные параметры можно измерить с помощью лазеров? Какие физические явления являются основой этих измерений? Укажите трудности практической реализации лазерных измерений.

КУРСОВЫЕ РАБОТЫ

Тема курсовой работы согласовывается с преподавателем. При этом студент получает от преподавателя указания по выполнению работы. Готовая курсовая работа сдается на кафедру во время сессии.

Приведенные темы являются обзорными, при выполнении которых студент должен составить возможно полное описание способов измерения соответствующей метеорологической величины, пользуясь литературой и сведениями, почерпнутыми из Интернета (рекомендуется использовать поисковые системы, вводя в строку поиска название исследуемой величины). Обязательны ссылки на литературные источники. Описание составляйте своими словами, избегая прямого «скачивания», что сразу же будет замечено при проверке. В конце работы должно быть приведено ваше собственное суждение о том, каковы достоинства и недостатки описанных методов измерения, в каких условиях целесообразно их применять. Сравните инерцию и чувствительность методов измерения. Желательно даже сравнить сложность и стоимость соответствующих приборов. Если вы работаете с приборами, измеряющими ту или иную метеорологическую величину, приведите ваше впечатление о работе приборов.

В конце работы обязательно приводится список используемой литературы.

Примечание. При обнаружении дословного сходства сданных работ (или дословного сходства с одной из работ, сданных в предыдущие годы), такие работы не зачитываются и возвращаются для полной переделки.

  1. Сравнение различных способов измерения температуры.
  2. Сравнение различных способов измерения влажности воздуха.
  3. Сравнение различных способов измерения скорости ветра.
  4. Сравнение различных способов измерения направления ветра. Способы дистанционной передачи информации о направлении флюгарки.
  5. Сравнение различных способов измерения атмосферного давления.
  6. Сравнение различных способов измерения актинометрических величин.
  7. Сравнение различных способов измерения высоты нижней границы облачности.
  8. Сравнение различных способов измерения метеорологической дальности видимости.
  9. Сравнение различных способов измерения содержания озона в атмосфере.
  10. Сравнение различных способов измерения параметров атмосферных аэрозолей.
  11. Измерение радиоактивного фона и радиоактивного заражения местности.
  12. Измерение количества осадков. Автоматизация процесса измерения осадков.
  13. Особенности измерения стандартных метеорологических величин в районе расположения метеорологической станции, где работает студент.
  14. Особенности эксплуатации метеорологического измерительного прибора (по согласованию с преподавателем), с которым работает студент.
  15. Информативный подход к проблеме измерения метеорологических параметров.
  16. Передача метеорологической информации по каналам связи. Скорость передачи, проблема искажения сигналов.
  17. Цифровые метеорологические измерительные приборы. Принципы конструирования цифровых приборов.
  18. Соотношение тепловой инерции и чувствительности термометрических датчиков.
  19. Измерение параметров атмосферного электричества. Электричество «хорошей погоды», грозовое электричество. Приборы и методы измерения.
  20. Радиолокационное зондирование атмосферы. Использование радиолокаторов для измерения метеорологических величин.
  21. Лазерное зондирование атмосферы. Лидары и их возможности для измерения метеопараметров.
  22. Измерения атмосферных параметров с помощью искусственных спутников Земли.

ДИПЛОМНЫЕ РАБОТЫ

Перед выполнением дипломной работы студент обязан проконсультироваться с преподавателем, получить его согласие на руководство. Далее согласовывается тема работы, о чем студент должен поставить в известность деканат. При выполнении работы обязательны периодические консультации с преподавателем (например, с использованием Интернета). Для окончательного редактирования текста работы студент обязан заблаговременно прибыть в Университет. Срок прибытия согласовывается с руководителем.

  1. Измерение метеорологической дальности видимости методом обратного рассеяния светового пучка.
  2. Проблема инерции и чувствительности термометрических датчиков, поиск оптимального соотношения.
  3. Проблема конденсационных следов за самолетами и снижения радиационных потоков.
  4. Проблема взаимосвязи космических лучей и погоды на Земле.
  5. Экологические проблемы, приборы контроля экологических параметров.
  6. Грозовое электричество, проблема поиска причин возникновения электризации.
  7. Встречные темы (например, поиск оптимальных путей организации измерений на вашей метеорологической станции).
Стр.
Предисловие
Общие указания
Литература
Указания по разделам
Введение
1.Основные понятия метеорологических измерений. Классификация метеорологических измерительных приборов.
2. Измерение температуры
3.Измерение влажности воздуха
4.Измерение параметров ветра
6.Измерение атмосферного давления
7.Актинометрические измерения
7. Дистанционные метеорологические приборы
8. Основные принципы устройства цифровых измерительных приборов. Основы теории информации.
9. Метеорологические измерения экологических параметров
10. Информационно-измерительные метеорологические системы. Автоматические метеорологические станции.
11. Использование искусственных спутников Земли для метеорологических измерений
12. Передача метеорологической информации по каналам связи. Факсимильная аппаратура.
13. Перспективы развития метеорологической измерительной техники
Контрольная работа
Курсовые работы
Примерный перечень тем курсовых работ
Дипломные работы
Примерный перечень тем дипломных работ

Учебное издание


Редактор И. Г. Максимова.

ЛР № 203209 от 30.12.96.


Подписано в печать …….. Формат 60 90 1 / 16 Бумага кн.-жур. Печать офсетная.

Печ. л. …….. Уч.-изд. л. ……….. Тираж …….. Зак. ………..

195196, СПб, Малоохтинский пр. 98. РГГМУ.

Отпечатано ………….

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГИДРОМЕТЕОРОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет заочного обучения

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по дисциплине

“МЕТОДЫ И СРЕДСТВА

ГИДРОМЕТЕОРОЛОГИЧЕСКИХ ИЗМЕРЕНИЙ”

для высших учебных заведений

Направление подготовки 280400 – Прикладная гидрометеорология

Профиль подготовки – Прикладная метеорология

Квалификация (степень)

Бакалавр


Санкт–Петербург


Одобрено Ученым советом метеорологического факультета

Методические указания по дисциплине "Методы и средства гидрометеорологических измерений". Специальность – метеорология. – СПб.: Изд. РГГМУ, 2013. – 26 с.

Методические указания составлены в соответствии с программой дисциплины "Методы и средства гидрометеорологических измерений". Даются рекомендации по изучению дисциплины. Приводятся вопросы для самопроверки, рекомендуемая литература, контрольные работы.

Составитель: Н.О. Григоров, доц., РГГМУ.

Ответственный редактор А.Д. Кузнецов, проф., РГГМУ

Ó Российский государственный гидрометеорологический университет (РГГМУ), 2013.


П Р Е Д И С Л О В И Е

В настоящем курсе изучаются основные принципы устройства гидрометеорологических измерительных приборов и информационно-измерительных систем. Перед изучении курса студенты должны ознакомиться с программой, имеющейся на факультете.

Курс можно разделить на две части. В первой части описываются только методы измерений основных метеорологических параметров – температуры, относительной влажности, атмосферного давления, параметров ветра и актинометрических параметров. Во второй части курса студенты изучают метеорологические измерительные приборы, которые используются в настоящее время в России, знакомятся с измерением специальных метеорологических величин (высоты нижней границы облачности, метеорологической дальности видимости и т. д.) и информационно-измерительными метеорологическими системами – автоматическими станциями. В последнем разделе курса студенты получают сведения о перспективах развития метеорологической измерительной техники.

В ходе изучения курса студент обязан ознакомиться с литературой (см ниже) и выполнить контрольную работу, которая сдается в ФЗО перед сессией. Во время сессии на III курсе студенты слушают лекции, в которых излагаются основные теоретические сведения, выполняют лабораторные работы и сдают зачет. После этого сдается итоговый экзамен по всему курсу.

Студенты допускаются до экзамена только после выполнения всех лабораторных и контрольных работ и сдачи зачетов по обеим частям курса.

Студенты также выполняют курсовую работу по курсу «Методы и средства гидрометеорологических измерений». За курсовую работу ставится зачет с оценкой.

Студенты, обучавшиеся в гидрометеорологических техникумах и имевшие хорошие оценки по профилирующим предметам, могут быть освобождены от выполнения лабораторных работ в ходе сессии. Этот вопрос решается руководителем цикла индивидуально для каждого студента. Выполнение контрольной работы и сдача экзаменов обязательна для всех студентов.


ОБЩИЕ УКАЗАНИЯ

При изучении курса студентам рекомендуется добиваться полного понимания материала. Помните, что непонимание лишь одного уравнения, элемента схемы или смысла какой-либо физической величины приводит к непониманию работы всего прибора. Если это требуется, повторите соответствующие разделы физики, математики или электроники, которые являются базовыми науками для изучаемого курса.

Когда Вы выполняете контрольную работу, избегайте прямого списывания с учебников и учебных пособий. Описывайте материал своими словами. Пусть стиль Вашего изложения будет менее литературным. Излагайте, однако, свои мысли. Такая работа скорее будет зачтена, чем ксерокопии целых книжных разделов. Объем контрольной работы примерно составляет одну школьную тетрадь 12 – 18 листов. Допускается использование e-mail, если у Вас имеется такая возможность. Адрес, по которому можно присылать работы, сообщается преподавателем на установочной лекции.

ЛИТЕРАТУРА

Основная

1. Григоров Н.О., Саенко А.Г., Восканян К.Л. Методы и средства гидрометеорологических измерений. Метеорологические приборы. Учебник по курсу. РГГМУ, С-Пб, 2012. – 306 с.

2. Стернзат М.С. Метеорологические приборы и измерения. - Л.; Гидрометеоиздат, 1978, 392с.

3. Григоров Н.О., Симакина Т.Е. Задачник по дисциплине «Методы и средства гидрометеорологических измерений». Изд. РГГМУ, С-Пб, 2006. – 41с.

4. Григоров Н.О. Презентации лекций по курсу «Методы и средства гидрометеорологических измерений». http://gmi.rshu.ru

5. Григоров Н.О. Лекции-вебинары по курсу «Методы и средства гидрометеорологических измерений» (в записи). http://fzo.rshu.ru/ (раздел «Лекции онлайн).


Дополнительная

6. Качурин Л.Г. Методы метеорологических измерений. - Л.; Гидрометеоиздат, 1985, 456с.

7. Городецкий О.А., Гуральник И.И., Ларин В.В. Метеорология, методы и технические средства наблюдений. - Л.; Гидрометеоиздат, 1984, 327с.

8. Ямпольский В.С. Основы автоматики и электронно-вычислительной техники. – М.: Просвещение, 1991. – 223 с.

УКАЗАНИЯ ПО РАЗДЕЛАМ

Введение

Основное внимание следует обратить на изучение атмосферных параметров, подлежащих измерениям. Уясните для себя смысл всех метеорологических величин и обоснование необходимости их измерения. Обратите внимание на цели измерений. В зависимости от поставленных целей (предсказание погоды, обеспечение работы аэропорта и т.д.) изменяются требования к измерительным приборам. Желательно дополнить материалы, приведенные в книгах, сведениями из Вашего опыта работы в метеослужбе.

Л и т е р а т у р а

Предисловие, введение, краткая история метеорологических измерений.

Раздел 1.1.

Вопросы для самопроверки

1. Перечислите основные метеорологические величины, подлежащие измерению на метеорологических станциях и постах.

2. Что такое цели измерения? Почему цель измерения определяет применяемые приборы?

3. Какие метеорологические параметры необходимо измерять для обеспечения посадки летательных аппаратов?

4. Для чего организована метеорологическая измерительная сеть?

5. Приведите примеры метеорологических измерительных приборов, которыми Вы пользуетесь в своей работе.

Часть 1. Методы измерения основных метеорологических параметров.

Основные понятия метеорологических измерений. Классификация

В Саратовском национальном исследовательском государственном университете имени Н.Г. Чернышевского на кафедре метеорологии и климатологии, помимо очного, реализуется программа заочного обучения по направлению Прикладная гидрометеорология.

Выставка «Петербург – метеорологическая столица России»

1 июля 2019 г. в Планетарии Санкт-Петербурга состоялось открытие выставки «Петербург – метеорологическая столица России». Выставка посвящена 185 – летию Гидрометслужбы России, 170 – летию Главной физической обсерватории (Главная геофизическая обсерватория им. А.И. Воейкова), 85 – летию Авиационной метеорологической станции «Шоссейная» (Пулково), ныне АМЦ «Пулково», подразделению Северо-Западного филиала ФГБУ «Авиаметтелеком Рогидромета» На выставке представлены уникальные метеорологические приборы из музея ГГО,

Небесная метеорология. К 185-летию Росгидромета (“АиФ на Мурмане” 11/07/2019)

Мало кто знает, что прогнозы погоды важны не только на земле, но и в небе. Без них полёты самолётов станут рискованной авантюрой. Для этого в каждом аэропорту есть своя метеорологическая служба. В этом году у российской метеослужбы юбилей – 185 лет. В 2019 году Гидрометеорологической службе России, одной из старейших в мире, исполнилось 185 лет. История службы чрезвычайно богата и

Посещение Северо-Западного филиала генеральным директором ФГБУ «Авиаметтелеком Росгидромета»

20-21 июня Северо-Западный филиал ФГБУ «Авиаметтелеком Росгидромета» посетили генеральный директор Никитов Артемий Владимирович, заместитель генерального директора Поляков Александр Викторович. В рамках визита Артемий Владимирович, Александр Викторович посетили АМЦ «Пулково» – рабочие места синоптиков отдела «Метеорологические прогнозы», техников-метеорологов отдела «Метеонаблюдений и информации», инженеров по эксплуатации и ремонту гидрометеорологических приборов, систем и оборудования. Ознакомились с технологиями работы авиаметперсонала, практическими мероприятиями, проводимыми в

Архив новостей

Август 2019
Пн Вт Ср Чт Пт Сб Вс
« Июл
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Температуру, относительную влажность и скорость движения воздуха измеряют на высоте один метр от пола или рабочей площад­ки при работах, выполняемых сидя, и на высоте 1,5 метра при ра­ботах выполняемых стоя.

Измерения проводят как на постоянных, так и на непостоянных рабочих местах при их минимальном и максимальном удалении, от ис­точников локального тепловыделения, охлаждения или влаговыделения.

Измерения показателей микроклимата должны производиться в начале, середине и конце холодного и теплого периода года не ме­нее 3 раз в смену (в начале, середине и конце).

В помещениях с большой плотностью рабочих мест, при отсут­ствии источников локального тепловыделения, охлаждения или влаговыделения, участки измерения температуры, относительной влажно­сти и скорости движения воздуха распределяются равномерно по всему помещению.

3.1. Измерение температуры воздуха

Для измерения температуры воздуха могут использоваться ртутные и спиртовые термометры. Однако при наличии в производственном помещении тепловых излучений показания обычных термометров не отражают истинной температуры воздуха. Учитывая это обстоятельство, ГОСТ 12.1.005-88 рекомендует использовать для измерения температуры аспирационные психрометры, тем более, что исследование метеоусловий предполагает одновременное определение и влажности воздуха. При определении температуры воздуха с использованием психрометра отсчет производят по сухому термометру.

При отсутствии в местах измерения источников лучистого тепла температуру воздуха можно измерять психрометром типа ПБУ-1 (без вентилятора), суточными и недельными термографами, электротермометрами.

Электротермометр ЭТП-М (рисунок 1) позволяет измерять температуру воздуха в диапазоне от -30°С до +120°С, с разбивкой предела измерения на три поддиапазона: I поддиапазон -30 – +20°С, II поддиапазон +20 – +70°С, III поддиапазон +70 – +120°С.

Прибор измерительного блока и подключаемого к нему датчика. В качестве датчика используется полупроводниковый термистор.

Принцип работы электротермометра основан на изменении электрического сопротивления датчика–термистора при изменении его температуры.

В электрической схеме прибора датчик – термистор включен в одно из плеч уравновешенного электрического мостика» При изменении сопротивления термистора, вследствие изменения его температуры, происходит нарушение равновесия мостика и через диагональ его протекает ток, фиксируемый микроамперметром.

Значение температуры определяется при помощи градуировочной зависимости.

Рисунок 1 – Лицевая панель электротермометра ЭТП-М

Порядок работы с прибором ЭТП-М следующий:

а) датчик подключается к прибору, который в процессе измерения должен находиться в горизонтальном положении;

б) переключателем П2 установить требуемый поддиапазон измеряемой температуры;

в) включить напряжение переключателей П3 ;

г) переключатель П1 установить в положение "Контроль";

д) ручкой "рег. напряжения" совместить стрелку миллиамперметра с максимумом шкалы (произвести уравновешивание электрического моста);

е) переключатель рода работы – П1 установить в положение "измерение";

ж) произвести отсчет по показаниям стрелки на шкале миллиамперметра;

з) определить температуру воздуха с использованием градуировочного графика (рисунок 2).

Рисунок 2 – График для определения температуры

3.2. Определение влажности воздуха

Для определения влажности воздуха применяются различного вида гигрометры и психрометры.

Гигрометры – волосяные и пленочные, основаны на способности волоса или биологической пленки вследствие их гигроскопичности увеличиваться в размере во влажной среде и уменьшаться в сухой. Увеличение или сокращение размеров волоса или пленки через систему рычагов передается стрелке, перемещающейся вдоль шкалы. Недостатком гигрометров является снижение чувствительности волоса и пленки во времени, поэтому показания этих приборов должны проверяться по аспирационному психрометру.

В основе измерения влажности воздуха психрометрами заложен принцип психрометрии.

Принцип психрометрии заключается в определении показаний двух рядом расположенных термометров, резервуар одного из которых покрыт увлажненной тканью. Влага, пропитывающая ткань, испаряясь с различной скоростью в зависимости от влажности и скорости движения воздуха, отнимает тепло от термометра, поэтому показания влажного термометра оказываются ниже показаний сухого. На основании показаний сухого и влажного термометров вычисляют относительную влаж­ность воздуха.

Аспирационный психрометр Ассмана состоит из двух ртутных термометров со шкалой на 50°С. Резервуар одного из термометров обернут тонкой тканью. Оба термометра заключены в металлическую оправу, а резервуары термометров находятся в двойных металлических гильзах, что исключает влияние тепловых излучений на показания термометров. В головке прибора помещен вентилятор с часовым механизмом или электрическим приводом, просасывающий воздух мимо резервуаров термометров с постоянной скоростью (около-4 м/с).

Принудительная аспирация воздуха в процессе измерения позволяет исключить влияние подвижности воздуха в производственном помещении и тем самым повысить точность измерений.

Прибором пользуются следующим образом: при помощи пипетки увлажняют обертку влажного термометра, держа психрометр вертикаль­но головкой вверх во избежание заливания воды в гильзы и головку прибора; заводят ключом механизм прибора до отказа или включают электрический привод в сеть и помещают прибор в исследуемой точке. Через 3-5 минут во время работы вентилятора производят отсчет. Записывают показания сухого и влажного термометра, а затем по специальной таблице 2 определяют относительную влажность.

Величину абсолютной и относительной влажности воздуха можно определить посредством расчета по формулам 1 и 2.

Абсолютную влажность воздуха при использовании аспирационного психрометра вычисляют по формуле:

(1)

А –абсолютная влажность, г/м 3

F 1 – максимально возможная масса водяного пара в граммах в воздухе при температуре влажного термометра, г/м 3 ;

0,5 – постоянный психрометрический коэффициент;

t С – показание сухого термометра, °С;

t В – показание влажного термометра, °С;

В – барометрическое давление, мм. рт. ст.;

755 – среднее барометрическое давление, мм. рт. ст.

Относительную влажность воздуха определяют по формуле:

(2)

F 2 – максимально возможная масса водяного пара при температуре сухого термометра, г/м 3 .

Используемые в формулах 1 и 2 величины F 1 и F 2 определяются из таблицы 1 .

Рисунок 3 Аспирационный психрометр Ассмана

3.3. Измерение скорости движения воздуха

Для измерения скорости движения воздуха используют анемометры разных конструкций. Выбор типа анемометра определяется в зависимости от целей исследования и величины измеряемой скорости движения воздуха.

Крыльчатый анемометр АСО-3 (рисунок 4) позволяет измерять скорость движения воздуха в пределах от 1 до 10 м/с. Крыльчатый анемометр обладает большой инерцией и начинает работать при движении воздуха со скоростью около 0,5 м/с. Давление, создаваемое токами воздуха меньшей скорости, не в состоянии преодолеть сопротивление трения в оси крыльчатки. При тронувшейся крыльчатке в начале замера прибор позволяет измерять скорость от 0,2 м/с.

Крыльчатый анемометр воспринимает движение воздуха колесом с пластинками (крыльями). От вращающегося под давлением воздуха колесика движение системой зубчатых колес передается стрелкам, движущимся по градуированным циферблатам.

Прибор имеет три циферблата. Центральная большая стрелка показывает единицы и десятки, стрелки двух малых циферблатов - сотни и тысячи делений. На маленьких циферблатах учитывают только целые деления.

Измерение скорости движения воздуха производят следующим об­разом: записав исходное положение стрелок на циферблатах - тысяч, сотен, единиц, отсоединяют с помощью арретира - рычажка, находяще­гося на боковой стороне прибора, счетчик от крыльчатки. Затем по­мещают прибор в ток воздуха таким образом, чтобы ось вращения крыльчатки была параллельна направлению потока воздуха. После того, как крыльчатка наберет максимальные обороты обратным поворотом ар­ретира, включают стрелки и в этот момент отмечают время. Через 50-100 с. остановить счетчик и секундомер, записать новое положение стрелок. Разность между конечными отсчетами разделить на время измерения. Затем по градуировочному графику (рисунку 1) определить искомую скорость движения воздуха. Для этого на вертикальной оси отложить число единиц шкалы, приходящихся на одну секунду измере­ния, а на горизонтальной оси получить значение скорости в м/с.

Измерение чашечным анемометром МС-13

Анемометр чашечный предназначен для измерения средней скорости воздушного потока от I до 20 м/с.

Ветроприемником анемометра служит четырехчашечная вертушка (рисунок 6). В остальном устройство и принцип работы аналогичны рассмотренному крыльчатому анемометру. Экспонирование анемометра в воздушном потоке производят в течение одной или двух минут. Ско­рость ветра определяется по градуировочному графику, приложенному к анемометру (рисунок 7).

Таблица 1 – Определение максимальной влажности в зависимости от температуры воздуха

Температура воздуха,°С

Температура воздуха,°С

Максимальное количество водяных паров,г/м 3

Температура воздуха,°С

Максимальное количество водяных паров,г/м 3

Таблица 2 – Определение относительной влажности

Показания

термометра,

Разность показаний сухого и

влажного термометров,

Видимость наряду с высотой облаков является тем важнейшим элементом, по которому устанавливается минимум метеоусловий, позволяющих производить взлет и посадку, ориентировку экипажа в полете и выполнение специальных работ авиаций. Если видимость во время полета хорошая, летчик легко ориентируется в воздухе, видит все препятствия, поэтому нет опасности столкновения с ними. Полет при плохой видимости значительно усложняется, так как летчик вынужден пилотировать самолет только по приборам..

Видимость в атмосфере представляет собой сложное психофизическое явление, обусловленное, главным образом, ослаблением светового потока частицами воздуха, а также жидкими и твердыми частицами, находящимися в атмосфере во взвешенном состоянии.

Ослабление светового потока в атмосфере характеризуется коэффициентом ослабления.

Видимость в атмосфере определяется не только коэффициентом ослабления, но также индивидуальной способностью восприятия и интерпретации, характеристиками источника света.

Международной комиссией по освещению (МКО) и Международной электротехнической комиссией (МЭК) установлены и рекомендованы четыре следующих фотометрических параметра:

  • а) световой поток (p) - величина, получаемая на основе потока излучения путем оценки этого излучения в соответствии с его воздействием на стандартного фотометрического наблюдателя, который определен Международной светотехнической комиссией (МСК);
  • б) сила света (интенсивность света) (i)- световой поток, приходящийся на единицу телесного угла;
  • в) яркость (фотометрическая яркость) (x) - сила света, приходящаяся на единицу площади освещаемой поверхности в заданном направлении
  • г) освещенность (E) - световой поток, приходящийся на единицу площади;

Понятие «видимость» широко применяется в метеорологии в двух совершенно определенных значениях. Во-первых, это одна из метеовеличин, характеризующая воздушные массы (арктическую, полярную, тропическую) и используемая в синоптической метеорологии и климатологии. В этом случае видимость является показателем оптического состояния атмосферы. Во вторых, это оперативный параметр, соответствующий определенным критериям или специальным применениям. В этом случае видимость выражается в виде расстояния, на котором видны конкретные маркеры или огни.

Мера видимости, используемая в метеорологии, в том числе и при метеорологическом обеспечении авиации, должна быть свободна от влияния не метеорологических условий и связана с субъективными представлениями о видимости и расстоянием, на котором обычные объекты могут наблюдаться и распознаваться.

Существуют следующие характеристики, определяющие дальность видимости:

метеорологическая дальность видимости (МДВ), метеорологическая оптическая дальность (МОД), дальность видимости на взлетной посадочной полосе ВПП.

Термин «дальность видимости на ВПП» во вех документах определяется одинаково: «Дальность видимости на ВПП». Расстояние в пределах которого пилот воздушного судна, находящегося на осевой линии ВПП, может видеть маркировочные знаки на поверхности ВПП или огни, которые ограничивает ВПП или обозначают ее осевую линию»

Дальность видимости объектов может изменяться в широких пределах: от нескольких метров в сильном тумане или в метели до нескольких десятков километров в прозрачном воздухе, пришедшем из Арктики..

Метеорологическая дальность видимости (МДВ) - наибольшее расстояние, с которого можно обнаружить днем на фоне неба или дымки черный объект размером более 15 угловых минут, ночью - опознать световые ориентиры, МДВ измеряется в м и км.

Видимость различных объектов зависит от целого ряда факторов, основными из которых являются:

  • - размеры, форма и цвет наблюдаемого объекта;
  • - цвет и яркость фона, на котором проецируется объект. Если цвет и яркость фона и объекта совпадают, объект не будет виден. Чем более контрастно различаются их цвета, тем лучше виден объект;
  • - освещенность предмета и фона. При хорошей освещенности предмет будет виден лучше, чем при плохой;
  • - выпуклость поверхности Земли и наличие естественных и искусственных препятствий ограничивают видимость предметов, их влияние существенно зависит от высот предмета и полета над поверхностью Земли;
  • - свойства глаз наблюдателя, их чувствительность к восприятию контраста цветов, острота зрения и др.;
  • - прозрачность атмосферы - степень ее замутненности, наличие в ней пыли, дыма и мельчайших взвешенных капелек воды (осадков).

Видимость определяется как на земле, так и с самолетов.

Обеспечение полетов современной скоростной авиации особенно на малых высотах и при снижении на посадку, требует определения горизонтальной, наклонной и вертикальной дальностей видимости.

Горизонтальная дальность видимости (ГДВ) - это видимость в горизонтальном направлении. Она может определяться как у поверхности земли, так и на высоте полета.

Наклонная дальность видимости - это видимость земных предметов с высоты полета в наклонной плоскости под некоторым углом к горизонту.

Вертикальная дальность видимости - это видимость в вертикальном направлении. Она зависит в основном от тех же факторов, что и ГДВ, но, кроме того, и от наличия облачности и слоев с ухудшенной видимостью под инверсиями.

Различные явления погоды (туман, осадки, пыльные бури, метели и др.) ухудшают горизонтальную, наклонную и вертикальную дальности видимости не в одинаковой степени. Так, сквозь тонкие облака и тонкий слои тумана сверху (в вертикальном направлении) могут хорошо просматриваться земные ориентиры. В то же время наклонная, а тем более горизонтальная дальность видимости в этом случае будет невелика. В прозрачном воздухе ГДВ будет меньше наклонной, так как на последнюю меньше влияют выпуклость земной поверхности и высота искусственных и естественных препятствий.

При наблюдении за мелкими объектами с малой высоты полета вертикальная видимость будет больше наклонной из-за малых угловых размеров объектов. Так, при высоте полета 8 - 10 км угловые размеры таких объектов, как железные и шоссейные дороги, здания, мосты, реки и небольшие населенные пункты, настолько малы, что их можно различить при ясной погоде, только пролетая над ними. Если же эти объекты оказываются в стороне от траектории полета, то они не видны. Такая ограниченная видимость объектов (ориентиров) затрудняет ориентировку при полете на малой высоте даже в ясную погоду.

Для решения ряда практических задач по метеорологическому обеспечению полетов ГДВ на аэродроме определяется инструментально или визуально по выбранным ориентирам (огням).

Известно, что результаты визуальных методов определения МДВ зависят от субъективных данных каждого наблюдателя и являются в связи с этим неточными, особенно ночью, когда нет достаточного количества ориентиров.

Более точными и не зависящими от субъективных данных наблюдателя являются инструментальные измерения видимости .

© 2024 softlot.ru
Строительный портал SoftLot