Строение и геологическая история Земли. Строение и состав земли - геология

Внутреннее строение Земли

В настоящее время преобладающим большинством геологов, геохимиков, геофизиков и планетологов принимается, что Земля имеет условно сферическое строение с нечёткими границами раздела (или перехода), а сферы – условно мозаично-блоковое. Основные сферы – земная кора, трёхслойная мантия и двухслойное ядро Земли.

Земная кора

Земная кора составляет самую верхнюю оболочку твёрдой Земли. Мощность её колеблется от 0 на некоторых участках срединно-океанических хребтов и океанских разломов до 70-75 км под горными сооружениями Анд, Гималаев и Тибета. Земная кора обладает латеральной неоднородностью , т.е. состав и строение земной коры различны под океанами и континентами. На основании этого выделяются два главных типа коры – океаническая и континентальная и один тип промежуточной коры.

Океаническая кора занимает на Земле около 56% земной поверхности. Мощность её обычно не превышает 5-6 км и максимальна у подножия континентов. В её строении выделяются три слоя.

Первый слой представлен осадочными породами. В основном это глинистые, кремнистые и карбонатные глубоководные пелагические осадки, причём карбонаты с определённой глубины исчезают вследствие растворения. Ближе к континенту появляется примесь обломочного материала, снесённого с суши (континента). Мощность осадков колеблется от ноля в зонах спрединга до 10-15 км вблизи континентальных подножий (в периокеанических прогибах).

Второй слой океанической коры в верхней части (2А) сложен базальтами с редкими и тонкими прослоями пелагических осадков. Базальты нередко обладают подушечной отдельностью (пиллоу-лавы), но отмечаются и покровы массивных базальтов. В нижней части второго слоя (2В) в базальтах развиты параллельные дайки долеритов. Общая мощность второго слоя около 1,5-2 км. Строение первого и второго слоя океанской коры хорошо изучено с помощью подводных аппаратов, драгированием и бурением.

Третий слой океанической коры состоит из полнокристаллических магматических пород основного и ультраосновного состава. В верхней части развиты породы типа габбро, а нижняя часть сложена «полосчатым комплексом», состоящем из чередования габбро и ультрамафитов. Мощность 3-го слоя около 5 км. Он изучен по данным драгирования и наблюдений с подводных аппаратов.

Возраст океанической коры не превышает 180 млн. лет.

При изучении складчатых поясов континентов были выявлены в них фрагменты ассоциаций пород, подобных океанским. Г Штейманом было предложено в начале XX века называть их офиолитовыми комплексами (или офиолитами ) и рассматривать «триаду» пород, состоящую из серпентенизированных ультрамафитов, габбро, базальтов и радиоляритов, как реликты океанической коры. Подтверждения этому были получены только в 60-ые годы XX столетия, после публикаций статьи на эту тему А.В. Пейве.

Континентальная кора распространена не только в пределах континентов, но и в пределах шельфовых зон континентальных окраин и микроконтинентов, расположенных внутри океанских бассейнов. Общая площадь её составляет около 41% земной поверхности. Средняя мощность 35-40 км. На щитах и платформах континентов она варьирует от 25 до 65 км, а под горными сооружениями достигает 70-75 км.

Континентальная кора имеет трёхслойное строение:

Первый слой – осадочный, обычно называется осадочным чехлом. Мощность его колеблется от нуля на щитах, поднятиях фундамента и в осевых зонах складчатых сооружений до 10-20 км в экзогональных впадинах плит платформ, передовых и межгорных прогибах. Он сложен, в основном, осадочными породами континентального или мелководного морского, реже батиального (в глубоководных впадинах) происхождения. В этом осадочном слое возможны покровы и силы магматических пород, образующих трапповые поля (трапповые формации). Возрастной диапазон пород осадочного чехла от кайнозоя до 1,7 млрд. лет. Скорость продольных волн составляет 2,0-5,0 км/с.

Второй слой континентальной коры или верхний слой консолидированной коры выходит на дневную поверхность на щитах, массивах или выступах платформ и в осевых частях складчатых сооружений. Он вскрыт на Балтийском (Фенноскандинавском) щите на глубину более 12 км Кольской сверхглубокой скважиной и на меньшую глубину в Швеции, на Русской плите в Саатлинской уральской скважине, на плите в США, в шахтах Индии и Южной Африки. Он сложен кристаллическими сланцами, гнейсами, амфиболитами, гранитами и гранитогнейсами, и называется гранитогнейсовым или гранитно-метаморфическим слоем. Мощность данного слоя коры достигает 15-20 км на платформах и 25-30 км в горных сооружениях. Скорость продольных волн составляет 5,5-6,5 км/с.

Третий слой или нижний слой консолидированной коры был выделен как гранулито-базитовый слой. Ранее предполагалось, что между вторым и третьим слоем существует чёткая сейсмическая граница, названная по имени её первооткрывателя границей Конрада (К) . Позднее при сейсмических исследованиях стали выделять даже до 2-3 границ К . Кроме того, данные бурения Кольской СГ-3 не подтвердили различие в составе пород при переходе границы Конрада. Поэтому в настоящее время большинство геологов и геофизиков различают верхнюю и нижнюю кору по их отличным реологическим свойствам: верхняя кора более жёсткая, и хрупкая, а нижняя – более пластичная. Тем не менее, на основании состава ксенолитов из трубок взрыва можно полагать, что «гранулито-базитовый» слой содержит гранулиты кислого и основного состава и базиты. На многих сейсмических профилях нижняя кора характеризуется наличием многочисленных отражающих площадок, что также может, вероятно, рассматриваться как наличие пластовых внедрений магматических пород (что-то похожее на трапповые поля). Скорость продольных волн в нижней коре 6,4-7,7 км/с.

Кора переходного типа является разновидностью коры между двумя крайними типами земной коры (океанской и континентальной) и может быть двух типов – субокеанской и субконтинентальной. Субокеанская кора развита вдоль континентальных склонов и подножий и, вероятно, подстилает дно котловин не очень глубоких и широких окраинных и внутренних морей. Мощность её не превышает 15-20 км. Она пронизана дайками и силами основных магматических пород. Субокеанская кора вскрыта скважиной у входа в Мексиканский залив и обнажена на побережье Красного моря. Субконтинентальная кора образуется в том случае, когда океанская кора в энсиматических вулканических дугах превращается в континентальную, но ещё не достигает «зрелости». Она обладает пониженной (менее 25 км) мощностью и более низкой степенью консолидированности. Скорость продольных волн в коре переходного типа не более 5,0-5,5 км/с.

Поверхность Мохоровичича и состав мантии. Граница между корой и мантией достаточно чётко определяется по резкому скачку скоростей продольных волн от 7,5-7,7 до 7,9-8,2 км/сек и она известна как поверхность Мохоровичича (Мохо или М) по имени выделившего её хорватского геофизика.

В океанах она отвечает границе между полосчатым комплексом 3-го слоя и серпентинизированными базит-гипербазитами. На континентах она расположена на глубине 25-65 км и до 75 км в складчатых областях. В ряде структур выделяется до трёх поверхностей Мохо, расстояния между которыми могут достигать нескольких км.

По результатам изучения ксенолитов из лав и кимберлитов из трубок взрыва предполагается, что под континентами в верхней мантии присутствую кроме перидотитов эклогиты (как реликты океанской коры, оказавшиеся в мантии в процессе субдукции?).

Верхняя часть мантии – это «истощённая» («деплетированная») мантия. Она обеднена кремнезёмом, щелочами, ураном, торем, редкими землями и другими некогерентными элементами благодаря выплавлению из неё базальтовых пород земной коры. Она охватывает почти всю её литосферную часть. Глубже она сменяется «неистощенной» мантией. Средний первичный состав мантии близок к шпинелевому лерцолиту или гипотетической смеси перидотита и базальта в пропоции 3:1, которая была названа А.Е. Рингвудом пиролитом .

Слой Голицина или средняя мантия (мезосфера) – переходная зона между верхней и нижней мантией. Простирается он с глубины 410 км, где отмечается резкое возрастание скоростей продольных волн, до глубины 670 км. Возрастание скоростей объясняется увеличением плотности вещества мантии примерно на 10%, в связи с переходом минеральных видов в другие виды с более плотной упаковкой: например, оливина в вадслеит, а затем вадслеита в рингвудит со структурой шпинели; пироксена в гранат.

Нижняя мантия начинается с глубины около 670 км и простирается до глубины 2900 км со слоем D в основании (2650-2900 км), т. е. до ядра Земли. На основании экспериментальных данных предполагается, что она должна быть сложена в основном перовскитом (MgSiO 3) и магнезиовюститом (Fe,Mg)O – продуктами дальнейшего изменения вещества нижней мантии при общем увеличении отношения Fe/Mg.

По последним сейсмотомографическим данным выявлена значительная негомогенность мантии, а также наличие большего количества сейсмических границ (глобальные уровни – 410, 520, 670, 900, 1700, 2200 км и промежуточные – 100, 300, 1000, 2000 км), обусловленных рубежами минеральных преобразований в мантии (Павленкова, 2002; Пущаровский, 1999, 2001, 2005; и др.).

По Д.Ю. Пущаровскому (2005) строение мантии представляется несколько иначе, чем вышеприведённые данные согласно традиционной модели (Хаин, Ломизе, 1995):

Верхняя мантия состоит из двух частей: верхняя часть до 410 км, нижняя часть 410-850 км. Между верхней и средней мантией выделен раздел I – 850-900 км.

Средняя мантия : 900-1700 км. Раздел II – 1700-2200 км.

Нижняя мантия : 2200-2900 км.

Ядро Земли по данным сейсмологии состоит из внешней жидкой части (2900-5146 км) и внутренней твёрдой (5146-6371 км). Состав ядра большинством принимается железным с примесью никеля, серы либо кислорода или кремния. Конвекция во внешнем ядре генерирует главное магнитное поле Земли. Предполагается, что на границе ядра и нижней мантии зарождаются плюмы , которые затем в виде потока энергии или высокоэнергетического вещества поднимаются вверх, формируя в земной коре или на её поверхности магматические породы.

Плюм мантийный узкий, поднимающийся вверх поток твёрдофазного вещества мантии диаметром около100 км, который зарождается в горячем, низкоплотностном пограничном слое, расположенном либо выше сейсмической границы на глубине 660 км, либо рядом с границей ядро-мантия на глубине 2900 км (A.W. Hofmann, 1997). По А.Ф. Грачёву (2000) плюм мантийный – это проявление внутриплитной магматической активности, обусловленное процессами в нижней мантии, источник которой может находиться на любой глубине в нижней мантии, вплоть до границы ядро-мантия (слой «Д»). (В отличие от горячей точки, где проявление внутриплитной магматической активности обусловлено процессами в верхней мантии.) Мантийные плюмы характерны для дивергентных геодинамических режимов. По Дж. Моргану (1971) плюмовые процессы зарождаются ещё под континентами на начальной стадии рифтогенеза (рифтинга). С проявлением мантийного плюма связывается формирование крупных сводовых поднятий (диаметром до 2000 км), в которых происходят интенсивные трещинные излияния базальтов Fe-Ti-типа с коматиитовой тенденцией, умеренно обогащённых лёгкими РЗЭ, с кислыми дифференциатами, составляющими не более 5% от общего объёма лав. Отношения изотопов 3 He/ 4 He(10 -6)>20; 143 Nd/ 144 Nd – 0.5126-0/5128; 87 Sr/ 86 Sr – 0.7042-0.7052. С мантийным плюмом связывается формирование мощных (от 3-5 км до 15-18 км) лавовых толщ архейских зеленокаменных поясов и более поздних рифтогенных структур.

В северо-восточной части Балтийского щита, и на Кольском п-ове в частности, предполагается, что мантийные плюмы обусловили формирование позднеархейских толеитбазальтовых и коматиитовых вулканитов зеленокаменных поясов, позднеархейского щелочногранитного и анортозитового магматизма, комплекса раннепротерозойских расслоенных интрузий и палеозойских щелочно-ультраосновных интрузий (Митрофанов, 2003).

Плюм-тектоника тектоника мантийных струй, связанная с тектоникой плит. Эта связь выражается в том, что субдуцируемая холодная литосфера погружается до границы верхней и нижней мантии (670 км), накапливается там, частично продавливаясь вниз, а затем через 300-400 млн. лет проникает в нижнюю мантию, достигая её границы с ядром (2900 км). Это вызывает изменение характера конвекции во внешнем ядре и его взаимодействия с внутренним ядром (граница между ними на глубине около 4200 км) и, в порядке компенсации притока материала сверху, образование на границе ядро/мантия восходящих суперплюмов. Последние поднимаются до подошвы литосферы, частично испытывая задержку на границе нижней и верхней мантии, а в тектоносфере расщепляются на более мелкие плюмы, с которыми и связан внутриплитный магматизм. Они же, очевидно, стимулируют конвекцию в астеносфере, ответственную за перемещение литосферных плит. Процессы же, происходящие в ядре, японские авторы обозначают в отличие от плейт- и плюм-тектоники, как тектонику роста (growth teсtonics), имея ввиду рост внутреннего, чисто железо-никелевого ядра за счёт внешнего ядра, пополняемого корово-мантиным силикатным материалом.

Возникновение мантийных плюмов, приводящее к образованию обширных провинций плато-базальтов, предшествует рифтогенезу в пределах континентальной литосферы. Дальнейшее развитие может происходить по полному эволюционному ряду, включающему заложение тройных соединений континентальных рифтов, последующее утонение, разрыв материковой коры и начало спрединга. Однако развитие отдельно взятого плюма не может привести к разрыву материковой коры. Разрыв происходит в случае заложения системы плюмов на континенте и далее процесс раскола происходит по принципу продвигающей трещины от одного плюма к другому.

Литосфера и астеносфера

Литосфера состоит из земной коры и части верхней мантии. Это понятие чисто реологическое, в отличие от коры и мантии. Она более жесткая и хрупкая, чем более ослабленная и пластичная подстилающая оболочка мантии, которая была выделена как астеносфера . Мощность литосферы от 3-4 км в осевых частях срединно-океанских хребтов до80-100 км на периферии океанов и 150-200 км и более (до 400 км?) под щитами древних платформ. Глубинные границы (150-200 км и более) между литосферой и астеносферой определяется с большим трудом, либо вовсе не выявляются, что, вероятно, объясняется высокой изостатической уравновешенностью и уменьшением контраста между литосферой и астеносферой в приграничной зоне, обусловленным высоким геотермическим градиентом, уменьшением количества расплава в астеносфере и т.д.

Тектоносфера

Источники тектонических движений и деформаций лежат не в самой литосфере, а в более глубоких уровнях Земли. В них вовлечена вся мантия вплоть до пограничного слоя с жидким ядром. В связи с тем, что источники движений проявляются и в непосредственно подстилающем литосферу более пластичном слое верхней мантии – астеносфере, литосферу и астеносферу нередко объединяют в одно понятие – тектоносферы как области проявления тектонических процессов. В геологическом смысле (по вещественному составу) тектоносфера делится на земную кору и верхнюю мантию до глубины примерно 400 км, а в реологическом смысле – на литосферу и астеносферу. Границы между этими подразделениями, как правило, не совпадают, и литосфера обычно включает кроме коры и какую-то часть верхней мантии.

Последние материалы

  • Основные закономерности татического деформирования грунтов

    За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

  • Инварианты напряженного и деформированного состояний грунтовой среды

    Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

  • О коэффициентах устойчивости и сопоставление с результатами опытов

    Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

  • Давление грунта на сооружения

    Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

  • Несущая способность оснований

    Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

  • Процесс отрыва сооружений от оснований

    Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

  • Решения плоской и пространственной задач консолидации и их приложения

    Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами , главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary - первичные ), более «медленные» поперечные волны называют S-волны (от англ. secondary - вторичные ). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км.

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км . На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга , хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км , делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора , ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой , состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная , или кристаллическая , кора , образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» - сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.


Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой - подкоровая мантия - простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» - слабый и «sphair» - сфера ); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone . Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом . м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы - твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии , отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Основная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см 3 ; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см 3 . В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см 3 в подкоровой части до 5,5 г/см 3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см 3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см 3 - происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см 3 .


Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

    сжатием за счет веса вышележащих оболочек (литостатическое давление);

    фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

    различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*10 9 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0 С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0 С. Средняя величина геотермического градиента в верхней части коры составляет 30 0 С/км и колеблется от 200 0 С/км в областях современного активного магматизма до 5 0 С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0 С/км, а в мантии – менее 1 0 С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.


Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации , т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло , возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 10 –4 %, в осадочных породах – 3,2 10 –4 %, в то время как в океанической коре она ничтожно мала: около 1,66 10 –7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло , сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы , обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0 С, на глубине 410 км – 1500 0 С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0 С, на глубине 5150 км – 3300 0 С, в центе Земли – 3400 0 С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 90 0) и наименьшим на экваторе (7-8 0).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe 2 O 4), гематит (Fe 2 O 3), ильменит (FeTiO 2), пирротин (Fe 1-2 S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию - изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака. Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

Планета Земля относится к планетом земной группы, это говорит о том, что поверхность Земли твердая и строение и состав Земли во многом похоже на другие планеты земной группы. Земля является самой крупной планетой земной группы. У Земли самый большой размер, масса, сила гравитации и магнитного поля. Поверхность планеты Земля еще очень (по астрономическим меркам) молода. 71% Поверхности планеты занимает водная оболочка и это делает планету уникальной, на других планетах вода на поверхности не могла бы находиться в жидком состоянии из-за неподходящих температур планет. Способность океанов сохранять тепло воды, позволяет координировать климат, перенося это тепло в другие места при помощи течения (наиболее известное теплое течение – Гольфстрим в Атлантическом океане).

Строение и состав похож на многие другие планеты, но все же есть весомые отличия. В составе земли можно найти все элементы таблицы Менделеева. Строение Земли всем известно с малых лет: металлическое ядро, большой слой мантии и, конечно же, земная кора с большим разнообразием рельефа и внутреннего состава.

Состав Земли.

Изучая массу Земли ученые пришли к выводу, что планета состоит на 32% из железа, 30% кислорода, 15% кремния, 14% магния, 3% серы, 2% никеля, 1,5% земли состоит из кальция и на 1,4% из алюминия, а на остальные элементы приходится 1,1%.

Строение Земли.

Земля, как и все планеты земной группы имеет слоистое строение. В центре планеты расположено ядро из расплавленного железа. Внутренняя часть ядра состоит из твердого железа. Все ядро планеты окружено вязкой магмой (более твердой, чем под поверхностью планеты) В состав ядра так же входит расплавленный никель и другие химические элементы.

Мантия планеты – вязкая оболочка на которую приходится 68% массы планеты и около 82% от общего объема планеты. Мантия состоит из силикатов железа, кальция, магния и многих других. Расстояние от поверхности Земли до ядра более 2800 км. и все это пространство занимает мантия. Обычно мантию разделяют на две основные части: верхнею и нижнюю. Выше отметки 660 км. до земной коры расположена верхняя мантия. Известно, что она, со времен формирования Земли и до наших дней, потерпела значительные изменения в своем составе, так же известно, что именно верхняя мантия породила земную кору. Нижняя мантия расположена, соответственно, ниже границы 660 км. до ядра планеты. Нижняя мантия была мало изучена из-за трудной доступности, но у ученых есть все основания полагать, что нижняя мантия не потерпела серьезных изменений в своем составе за все время существования планеты.

Земная кора – самая верхняя, твердая оболочка планеты. Толщина земной коры сохраняется в пределах от 6 км. на дне океанов и до 50 км. на континентах. Земную кору, так же как и мантию, разделяют на 2 части: океаническая земная кора и континентальная земная кора. Океаническая земная кора состоит, в основном, из различных пород и осадочного чехла. Континентальная земная кора состоит из трех слоев: осадочный чехол, гранитный и базальтовый.

За время жизни планеты состав и строение Земли терпели значительные изменения. Рельеф планеты постоянно меняется, тектонические плиты то сдвигаются, образуя на месте своего стыка большие горные рельефы, то раздвигаются, создавая между собой моря и океаны. Движение тектонических плит происходит из-за изменения температур мантии под ними и под различными химическими воздействиями. Состав планеты тоже подвергался различным внешним воздействиям, что привело в его изменению.

В один момент, Земля достигла того состояния, чтобы на ней могла появиться жизнь, что и произошло. длилась очень долгое время. За эти миллиарды лет она смогла из одноклеточного организма перерасти или мутировать в многоклеточные и сложные организмы, каким и является человек.

Основным объектом изучения геологии является земная кора, внешняя твердая оболочка Земли, имеющая важнейшее значение для осуществления жизни и деятельности человека. При исследованиях состава, строения и истории развития Земли и земной коры, в частности, геологи используют: наблюдения; опыт или эксперимент, включающий различные как собственные, так и применяемые в других естественных науках методы исследований, например, физико-химические, биологические и др.; моделирование; метод аналогий; теоретический анализ; логические построения (гипотезы) и т. д.

В данном разделе рассматривается вопрос происхождения Земли, ее форма и строение, состав, история развития земной коры (геохронология); тектонические движения земной коры, формы поверхности (рельеф).

ПРОИСХОЖДЕНИЕ, ФОРМА И СТРОЕНИЕ ЗЕМЛИ ПРОИСХОЖДЕНИЕ ЗЕМЛИ

Солнечная система состоит из небесных тел. В нее входят: Солнце, девять больших планет, в том числе Земля, и десятки тысяч малых планет, комет и множество метеорных тел. Солнечная система - сложный и многообразный мир, далеко еще не изученный.

Вопрос о происхождении Земли - важнейший вопрос естествознания. Более 100 лет пользовалась признанием гипотеза Канта - Лапласа, согласно которой Солнечная система образовалась из огромной раскаленной газоподобной туманности, вращавшей-

ся вокруг оси, а Земля вначале была в жидком состоянии, а потом стала твердым телом.

Дальнейшее развитие науки показало несостоятельность этой гипотезы. В 40-х годах XX в. акад. О.Ю. Шмидт выдвинул новую гипотезу происхождения планет Солнечной системы, в том числе и Земли, согласно которой Солнце на своем пути пересекло и захватило одно из пылевых скоплений Галактики, поэтому планеты образовались не из раскаленных газов, а из пылевидных частиц, вращающихся вокруг Солнца. В этом скоплении со временем возникли уплотненные сгустки материи, давшие начало планетам.

Земля, по О.Ю. Шмидту, первоначально была холодной. Разогрев ее недр начался, когда она достигла больших размеров. Это произошло за счет выделения теплоты в результате распада имеющихся в ней радиоактивных веществ. Недра Земли приобрели пластическое состояние, более плотные вещества сосредоточились ближе к центру планеты, более легкие у ее периферии. Произошло расслоение Земли на отдельные оболочки. По гипотезе О.Ю. Шмидта, расслоение продолжается до настоящего времени. По мнению ряда ученых, именно это является основной причиной движений в земной коре, т. е. причиной тектонических процессов.

Заслуживает внимания гипотеза В.Г. Фесенкова, который считает, что в недрах звезд, в том числе и Солнца, протекают ядерные процессы. В один из периодов это привело к быстрому сжатию и увеличению скорости вращения Солнца. При этом образовался длинный выступ, который потом оторвался и распался на отдельные планеты. Обзор гипотез о происхождении Земли и наиболее вероятная схема ее происхождения детально рассмотрена в книге И.И. Потапова «Геология и экология сегодня» (1999).

КРАТКИЙ ОЧЕРК ГЛОБАЛЬНОЙ ЭВОЛЮЦИИ ЗЕМЛИ

Происхождение планет Солнечной системы и их эволюция активно изучались в XX в. в фундаментальных работах О.Ю. Шмидта, В.С. Сафронова, X. Аль-вена и Г. Аррениуса, А.В. Витязева, А. Гингвуда, В.Е. Хайна, О.Г. Сорохтина, С.А. Уманова, Л.М. Наймарка, В. Эльзассера, Н.А. Божко, А. Смита, Дж. Юрай-дена и др. Согласно современным космологическим представлениям, заложенным О.Ю. Шмидтом, Земля и Луна, равно как и другие планеты Солнечной системы, образовались за счет аккреции (слипания и дальнейшего роста) твердых частиц газопылевого протопланетного облака. На первом этапе рост Земли шел в ускоряющемся режиме аккреции, но по мере исчерпания запасов твердого вещества в околоземном рое планетезималей протопланетного облака этот рост постепенно замедлился. Процесс аккреции Земли сопровождался выделением колоссального количества гравитационной энергии, примерно 23,3 10 й эрг. Такое количество энергии способно было не только расплавить вещество, но даже растворить его, но большая часть этой энергии выделялась в приповерхностной части Протоземли и терялась в виде теплового излучения. На то чтобы Земля сформировалась на 99 % ее современной массы, потребовалось 100 млн лет.

На первом этапе молодая Земля сразу же после образования была относительно холодным телом, и температура ее недр не превышала температуры плавления земного вещества, в силу того что при формировании планеты происходил не только нагрев за счет падающих планетезималей, но и остывание за счет теп-лопотерь в окружающее пространство, кроме того, Земля имела однородный состав. Дальнейшая эволюция Земли обусловлена ее составом, теплозапасом и историей взаимодействия с Луной. Влияние состава сказывается прежде всего через энергию распада радиоактивных элементов и гравитационную дифференциацию земного вещества.

До формирования планетной системы звезда Солнце представляла собой практически классический красный гигант. Звезды этого типа в результате внутренних ядерных реакций водородного горения формируют более тяжелые химические элементы с выделением огромного количества энергии и возникновением сильного светового давления с поверхности на газообразную атмосферу. В результате комбинационного воздействия этого давления и огромного притяжения атмосфера звезды испытывала попеременное сжатие и расширение. Этот процесс в условиях динамического увеличения массы газовой оболочки продолжался до тех пор, пока в результате резонанса внешняя газовая оболочка, оторвавшись от Солнца, не превратилась в планетарную туманность.

Под воздействием силового магнитного поля звезды ионизированное вещество планетарной туманности подверглось электромагнитной сепарации слагающих его химических элементов. Постепенная потеря тепловой энергии и электрических зарядов газов привело их к слипанию. При этом под воздействием магнитного поля звезды обеспечивалась эффективная передача момента вращения к образовавшимся в результате аккреции планетезималям, которые послужили началом формирования всех планет Солнечной системы. При потере заряда ионизированными химическими элементами последние превращались в молекулы, реагировавшие друг с другом, образуя простейшие химические соединения: гидриды, карбиды, оксиды, цианиды, сульфиды и хлориды железа и др.

Процесс постепенного уплотнения, разогревания и дальнейшей дифференциации вещества в образовавшихся планетах происходил с захватом частиц из окружающего пространства. В центре формирующейся протопланеты концентрировались металлы за счет гравитационного разделения вещества. Вокруг этой зоны собирались карбиды железа и никеля, сернистое железо и оксиды железа. Таким образом образовалось внешнее жидкое ядро, которое в своей оболочке содержало гидриды и оксиды кремния и алюминия, воду, метан, водород, оксиды магния, калия, натрия, кальция и другие соединения. При этом происходила зонная плавка образовавшейся оболочки и сокращение поверхности и уменьшение объема планеты. Следующими этапами было формирование мантии, протокоры и выплавление астеносферы. Протокора дробилась за счет упомянутого выше сокращения объема и поверхности. За счет этого на поверхность изливались базальты, которые после остывания вновь погружались в глубинную часть мантии и подвергались следующей переплавке; затем часть базальтовой коры постепенно трансформировалась в гранитную.

Поверхностные слои Земли на этапе формирования состояли из мелкопористого реголита, который активно связывал выделявшиеся воду и углекислый газ за счет своего ультраосновного состава. Общий теплозапас Земли и распределение температуры в ее недрах определялись скоростью роста планеты. В целом, в отличие от Луны, Земля никогда не плавилась полностью, а процесс формирования земного ядра растянулся приблизительно на 4 млрд лет.

Примерно 600 млн лет продолжалось состояние холодной и тектонически пассивной Земли. В это время медленно разогревались недра планеты и примерно 4 млрд лет назад на Земле проявилась активная гранитизация и сформировалась астеносфера. При этом Луна как самый массивный спутник «вычищал» из околоземного пространства все имевшиеся там меньшие спутники и микролуны,

а на самой Луне произошла вспышка базальтового магматизма, что совпало с началом тектонической активности на Земле (период продолжался от 4,0 до 3,6 млрд лет назад). В этот же момент в недрах Земли возбуждается процесс гравитационной дифференциации земного вещества - главного процесса, поддерживавшего тектоническую активность Земли во все последующие геологические эпохи и приведшего к выделению и росту плотного оксидно-железного земного ядра.

Так как в криптотектоническую эпоху (катархее) земное вещество никогда не плавилось, то не могли развиваться процессы дегазации Земли, поэтому первые 600 млн лет существования Земли на ее поверхности полностью отсутствовала гидросфера, а атмосфера была исключительно разряженной и состояла из благородных газов. В это время рельеф Земли был сглаженным, состоявшим из темно-серого реголита. Все освещалось желтым слабогреюшим Солнцем (светимость была на 30 % меньше современной) и непомерно большим без пятен диском Луны (она приблизительно в 300-350 раз превышала современную видимую площадь диска Луны). Луна была еще горячей планетой и могла обогревать Землю. Стремительным было движение Солнца - всего за 3 ч оно пересекало небосвод, чтобы через 3 ч вновь взойти с востока. Гораздо медленнее двигалась Луна, так как она быстро вращалась вокруг Земли в ту же сторону, так что и фазы Луны проходили все стадии за 8-10 ч. Луна обращалась вокруг Земли по орбите с радиусом 14-25 тыс. км (сейчас радиус 384,4 тыс. км). Интенсивные приливные деформации Земли вызывали вслед движению Луны непрерывную (через каждые 18-20 ч) череду землетрясений. Амплитуда лунных приливов составляла 1,5 км.

Постепенно, примерно через миллион лет после образования, за счет осуществлявшегося отталкивания лунные приливы снизились до 130 м, еще через 10 млн лет до 25 м, а через 100 млн лет - до 15 м, к концу катархея - до 7 м, а сейчас в подлунной точке современные приливы твердой Земли составляют 45 см. Приливные землетрясения в то время были исключительно экзогенного характера, так как никакой тектонической деятельности еще не было. В архее, в самом начале, дифференциация земного вещества происходила путем выплавления из него металлического железа на уровне верхней мантии. В связи с исключительно высокой вязкостью холодной сердцевины молодой Земли возникшая гравитационная неустойчивость могла быть компенсирована путем выжимания этой сердцевины к земной поверхности и затекания на ее место выделившихся ранее тяжелых расплавов, т. е. путем формирования у Земли плотного ядра. Этот процесс завершился к концу архея около 2,7-2,6 млрд лет назад; в это время все оборобленные до этого континентальные массивы стремительно начали двигаться к одному из полюсов и объединились в первый на планете суперконтинент Моногея. Ландшафты Земли изменились, контрастность рельефа не превышала 1-2 км, все понижения рельефа постепенно заполнялись водой и в позднем архее образовался мелководный (до 1 км) единый Мировой океан.

В начале архея Луна удалилась от Земли на 160 тыс. км. Земля вращалась вокруг своей оси с большой скоростью (в году было 890 суток, а сутки продолжались 9,9 ч). Лунные приливы амплитудой до 360 см деформировали поверхность Земли через каждые 5,2 ч; к концу архея вращение Земли существенно замедлилось (в году стало 490 суток по 19 ч), а Луна перестала влиять на тектоническую активность Земли. Атмосфера в архее пополнилась азотом, углекислым газом и парами воды, но кислород отсутствовал, так как он мгновенно связывался свободным (металлическим) железом мантийного вещества, постоянно поднимавшегося через рифтовые зоны к поверхности Земли.

В протерозое за счет перераспределения конвективных движений под суперконтинентом Моногея восходящий поток привел к его распаду (примерно 2,4-3,3 млрд лет назад). Последовавшие затем формирования и дробления суперконтинентов Мегагеи, Мезогеи и Пангеи проходили с образованием сложнейших тектонических структур и продолжались вплоть до кембрия и ордовика (уже в палеозое). К этому времени масса воды на поверхности Земли стала настолько

большой, что уже проявилось в формировании более глубоководного Мирового океана. Океанская кора подверглась гидратации и этот процесс сопровождался усилением поглощения углекислого газа с образованием карбонатов. Атмосфера продолжала оставаться обедненной кислородом за счет продолжавшегося связывания его выделявшимся железом. Этот процесс завершился только к началу фане-розоя, и с этого времени земная атмосфера стала активно насыщаться кислородом, постепенно приближаясь к ее современному составу.

В этой новой ситуации произошла резкая активизация жизненных форм, обмен веществ которых был построен на реакциях обратного окисления органических веществ, синтезируемых растениями. Так появились организмы царства животных, но это уже к концу кембрийского периода, в фанерозое, и это привело к возникновению всех типов скелетных и бесскелетных животных, сказавшихся на многих геологических процессах в поверхностной зоне Земли в последующие геологические эпохи. Геологическая эволюция фанерозоя изучена гораздо подробнее, чем другие эпохи, и можно коротко описать ее следующим образом. В это наиболее близкое нам время, как было выявлено, происходили трансгрессии и регрессии океана, глобальные изменения климата, в частности, чередование ледниковых и практически безледниковых периодов, кстати, первым, как предполагается, на Земле было Гуронское оледенение в протерозое.

Процессы трансгрессий и регрессий океана при мощном развитии жизненных форм, активная эродирующая деятельность ледников и эрозионная деятельность ледниковых вод привели к значительной переработке пород, слагавших поверхностную зону земной коры, накоплению терригенного материала на океанском дне, седиментационным процессам накопления органогенного и хемо-генного материала в водных бассейнах.

Пространственное расположение материков и океанов постепенно менялось и было весьма различным относительно экватора: попеременно, то северное, то южное полушарие было континентальным или океаническим. Климат также неоднократно менялся, находясь в тесной связи с эпохами оледенений и межледниковий. Активно от палеозоя до кайнозоя (и в нем) происходили изменения глубин, температуры и состава вод Мирового океана; развитие жизненных форм привело к выходу их из водной среды и постепенному освоению суши, а также эволюции жизненных форм вплоть до известных. На основании анализа геологической истории фанерозоя следует вывод, что все главные рубежи (разделение геохронологической шкалы на эры, периоды и эпохи) в значительной степени обусловлены столкновениями и расколами материков в процессе глобального перемещения «ансамбля» литосферных плит.

ФОРМА ЗЕМЛИ

Форма Земли обычно именуется земным шаром. Установлено, что масса Земли равна 5976 10 21 кг, объем 1,083 10 12 км 3 . Средний радиус 6371,2 км, средняя плотность 5,518 кг/м 3 , среднее ускорение силы тяжести 9,81 м/с 2 . Форма Земли близка к трехосному эллипсоиду вращения с полярным сжатием: у современной Земли полярный радиус 6356,78 км, а экваториальный 6378,16 км. Длина земного меридиана составляет 40008,548 км, длина экватора 40075,704 км. Полярное сжатие (или «сплюснутость») обусловлена вращением Земли вокруг полярной оси и величина этого сжатия связана со скоростью вращения Земли. Иногда форму Земли именуют сфероидом, но для Земли есть и

собственное наименование формы, а именно геоид. Дело в том, что земная поверхность изменчива и значительна по высоте; есть высочайшие горные системы более чем в 8000 м (например, гора Эверест - 8842 м) и глубокие океанические впадины более чем в

11 000 м (Марианская впадина - 11 022 м). Геоид вне континентов совпадает с невозмущенной поверхностью Мирового океана, на континентах поверхность геоида рассчитана по гравиметрическим исследованиям и с помощью наблюдений из космоса.

Земля обладает сложноорганизованным магнитным полем, которое можно описать как поле, создаваемое намагниченным шаром или магнитным диполем.

Поверхность земного шара на 70,8% (361,1 млн км 2) занята поверхностными водами (океанами, морями, озерами, водохранилищами, реками и т. д.). Суша составляет 29,2 % (148,9 млн км 2).

СТРОЕНИЕ ЗЕМЛИ

В общем виде, как установлено современными геофизическими исследованиями на основании, в частности, оценок скоростей распространения сейсмических волн, изучения плотности земного вещества, массы Земли, результатов космических экспериментов по определению распределения воздушного и водного пространств и другими данными, Земля сложена как бы несколькими концентрическими оболочками: внешними - атмосфера (газовая оболочка), гидросфера (водная оболочка), биосфера (область распространения живого вещества, по В.И. Вернадскому) и внутренними, которые называют собственно геосферами (ядро, мантия и литосфера) (рис. 1).

Непосредственному наблюдению доступны атмосфера, гидросфера, биосфера и самая верхняя часть земной коры. С помощью буровых скважин человеку удается изучать глубины в основном до 8 км. Проходка сверхглубоких скважин осуществляется в научных целях в нашей стране, США и Канаде (в России на Кольской сверхглубокой скважине достигнута глубина более

12 км, что позволило отобрать образцы горных пород для непосредственного прямого изучения). Основной целью сверхглубокого бурения является достижение глубинных слоев земной коры - границ «гранитного» и «базальтового» слоев или верхних границ мантии. Строение более глубоких недр Земли изучается геофизическими методами, из которых наибольшее значение имеют сейсмические и гравиметрические. Изучение вещества, поднятого с границ мантии, должно внести ясность в проблему строения Земли. Особый интерес представляет мантия, так как

Рис. 1. Схематическое изображение строения Земли (а) и земной коры (б):

Л - ядро; В у С - мантия; О - земная кора; Е - атмосфера (по М. Васичу); 1 - покровные отложения; 2 - гранитоподобный слой; 3 - базальтовый слой; 4-верхняя мантия; 5-мантия

земная кора со всеми полезными ископаемыми образовалась в конечном счете из ее вещества.

Атмосфера по распределенной в ней температуре снизу вверх подразделяется на тропосферу, стратосферу, мезосферу, термосферу и экзосферу. Тропосфера составляет около 80 % всей массы атмосферы и достигает высоты 16-18 км в экваториальной части и

8-10 км в полярных областях. Стратосфера простирается до высоты 55 км и имеет у верхней границы слой озона. Далее идут до высоты 80 км мезосфера, до 800-1000 км термосфера и выше располагается экзосфера (сфера рассеивания), составляющая не более 0,5 % массы земной атмосферы. В состав атмосферы входят азот (78,1 %), кислород (21,3 %), аргон (1,28 %), углекислота (0,04 %) и другие газы и почти весь водяной пар. Содержание озона (0 3) равно 3,1 10 15 г, а кислорода (0 2) 1,192 10 2! г. С удалением от поверхности Земли температура атмосферы резко понижается и на высоте 10-12 км она уже составляет около -50 °С. В тропосфере происходит образование облаков и сосредоточиваются тепловые движения воздуха. У поверхности Земли наиболее высокая температура была отмечена в Ливии (+58 °С в тени), на территории бывшего СССР в районе г. Термез (+50 °С в тени).

Наиболее низкая температура зафиксирована в Антарктиде (-87 °С), а на территории России - в Якутии (-71 °С).

Стратосфера - следующий над тропосферой слой. Присутствие озона в данном атмосферном слое обусловливает повышение температуры в нем до +50 °С, но на высоте 8-90 км температура снова понижается до -60...-90 °С.

Среднее давление воздуха на уровне моря равно 1,0132 бар (760 мм рт. ст.), а плотность 1,3 10 3 г/см. В атмосфере и ее облачном покрове поглощается 18 % излучения Солнца. В результате радиационного баланса системы «Земля-атмосфера» средняя температура на поверхности Земли положительная (+15 °С), хотя ее колебания в разных климатических зонах могут достигать 150 °С.

Гидросфера - водная оболочка, которая играет большую роль в геологических процессах Земли. В ее состав входят все воды Земли (океаны, моря, реки, озера, материковые льды и т. д.). Гидросфера не образует сплошного слоя и покрывает земную поверхность на 70,8 %. Средняя мощность ее около 3,8 км, наибольшая - свыше 11 км (11 022 м - Марианская впадина в Тихом океане).

Гидросфера Земли значительно моложе самой планеты. На первых этапах своего существования поверхность Земли была полностью безводной, да и в атмосфере водяного пара практически не было. Образование гидросферы обусловлено процессами отделения воды из вещества мантии. Гидросфера в настоящее время составляет неразрывное единство с литосферой, атмосферой и биосферой. Именно для последней - биосферы - весьма важное значение имеют уникальные свойства воды как химического соединения, например, изменения в объеме при переходе воды из одного фазового состояния в другое (при замерзании,

при испарении); высокая растворяющая способность по отношению почти ко всем соединениям на Земле.

Именно наличие воды по своей сути обеспечивает существование жизни на Земле в известной нам форме. Из воды, как простого соединения, и углекислоты растения способны под воздействием солнечной энергии и в присутствии хлорофилла образовывать сложные органические соединения, что собственно и является процессом фотосинтеза. Вода на Земле распределена неравномерно, большая ее часть сосредоточена на поверхности. По отношению же к объему земного шара общий объем гидросферы не превышает 0,13 %. Основную часть гидросферы составляет Мировой океан (94 %), площадь которого 361059 км 2 , а общий объем-1370 млн км 3 . В континентальной земной коре 4,42 10 23 г воды, в океанической -3,61 10 23 г. В табл. 1 приведено распределение воды на Земле.

Таблица 1

Объем гидросферы и интенсивность водообмена

^Активному водообмену и использованию могут быть подвергнуты всего лишь 4000 тыс. км 3 подземных вод, расположенных на небольших глубинах.

Температура воды в океане меняется не только в зависимости от широты местности (близость к полюсам или экватору), но и от глубины океана. Наибольшей изменчивостью температур отличается поверхностный слой до глубины 150 м. Самая высокая температура воды в верхнем слое отмечена в Персидском заливе (+35,6 °С), а наиболее низкая - в Северном Ледовитом океане (-2,8 °С).

Химический состав гидросферы весьма разнообразен: от весьма пресных до очень соленых вод, типа рассолов.

Более 98 % всех водных ресурсов Земли составляют соленые воды океанов, морей и некоторых озер, ^гтатеке минера пизпуян-

ные подземные воды. Общий объем пресной воды на Земле равен 28,25 млн км 3 , что составляет всего лишь около 2 % общего объема гидросферы, при этом наибольшая часть пресных вод сосредоточена в материковых льдах Антарктиды, Гренландии, полярных островов и высокогорных областей. Это вода в настоящее время малодоступна для практического использования человеком.

В Мировом океане содержится 1,4-10 2 диоксида углерода (С0 2), что почти в 60 раз больше, чем в атмосфере; кислорода в океане растворено 8 10 18 г или почти в 150 раз меньше, чем в атмосфере. Ежегодно реки сносят в океаны около 2,53 10 16 г терри-генного материала с суши, из них почти 2,25 10 16 г приходится на взвесь, остальное - растворимые и органические вещества.

Соленость (средняя) морской воды равна 3,5 % (35 г/л). В морской воде кроме хлоридов, сульфатов и карбонатов содержатся также йод, фтор, фосфор, рубидий, цезий, золото и другие элементы. В воде растворено 0,48 10 23 г солей.

Глубоководные исследования, проведенные в последние годы, позволили установить наличие горизонтальных и вертикальных течений, существование форм жизни во всей толще воды. Органический мир моря разделяется на бентос, планктон, нектон и др. К бентосу относятся организмы, обитающие на грунте и в грунте морских и континентальных водоемов. Планктон - совокупность организмов, населяющих толщу воды, не способных противостоять переносу течением. Нектон - активно плавающие, например рыбы, и другие морские животные.

В настоящее время серьезным становится вопрос о дефиците пресной воды, что является одной из составляющих развивающегося глобального экологического кризиса. Дело в том, что пресная вода необходима не только для утилитарных нужд человека (питья, приготовления пищи, умывания и т. п.), но и для большинства промышленных процессов, не говоря уже о том, что только пресная вода пригодна для сельскохозяйственного производства - агротехники и животноводства, так как подавляющее большинство растений и животных сосредоточено на суше и для осуществления своей жизнедеятельности они используют исключительно пресную воду. Рост населения Земли (уже сейчас на планете более 6 млрд человек) и связанное с этим активное развитие промышленности и сельскохозяйственного производства привели к тому, что ежегодно человеком потребляется 3,5 тыс. км 3 пресной воды, причем безвозвратные потери составляют 150 км 3 . Та часть гидросферы, которая пригодна для водоснабжения, составляет 4,2 км 3 , это всего лишь 0,3 % объема гидросферы. В России достаточно большие запасы пресной воды (около 150 тыс. рек, 200 тыс. озер, множество водохранилищ и прудов,

значительные объемы подземных вод), однако распределение этих запасов по территории страны далеко неравномерно.

Гидросфера играет важную роль в проявлении многих геологических процессов, особенно в поверхностной зоне земной коры. С одной стороны, под воздействием гидросферы происходит интенсивное разрушение горных пород и их перемещение, пере-отложение, с другой - гидросфера выступает как мощный созидательный фактор, являясь по существу бассейном для накопления в ее пределах значительных толщ осадков разного состава.

Биосфера находится в постоянном взаимодействии с литосферой, гидросферой и атмосферой, что существенно сказывается на составе и строении литосферы.

В целом под биосферой в настоящее время понимают область распространения живого вещества (живые организмы известных науке форм); это сложноорганизованная оболочка, связанная биохимическими (и геохимическими) циклами миграции вещества, энергии и информации. Академик В. И. Вернадский в понятие биосферы включает все структуры Земли, генетически связанные с живым веществом; прошлой или современной деятельностью живых организмов. Большая часть геологической истории Земли связана с деятельностью живых организмов, особенно в поверхностной части земной коры, например, это весьма мощные осадочные толщи органогенных горных пород - известняков, диатомитов и др. Область распространения биосферы ограничивается в атмосфере озоновым слоем (примерно 18-50 км над поверхностью планеты), выше которого известные на Земле формы жизни невозможны без специальных средств защиты, как это осуществляется при космических полетах за пределы атмосферы и на другие планеты. В недра Земли до последнего времени биосфера распространялась до глубины Марианской впадины в 11 022 м, однако при бурении Кольской сверхглубокой скважины достигнута глубина более 12 км, а это означает, что на данную глубину осуществлено проникновение живого вещества.

Внутреннее строение Земли, по современным представлениям, состоит из ядра, мантии и литосферы. Границы между ними достаточно условны, вследствие взаимопроникновения как по площади, так и по глубине (см. рис. 1).

Земное ядро состоит из внешнего (жидкого) и внутреннего (твердого) ядра. Радиус внутреннего ядра (так называемый слой в) примерно равен 1200-1250 км, переходный слой (Б) между внутренним и внешним ядром имеет мощность около 300-400 км, а радиус внешнего ядра равен 3450-3500 км (соответственно глубина 2870-2920 км). Плотность вещества во внешнем ядре с глубиной возрастает с 9,5 до 12,3 г/см 3 . В центральной части

внутреннего ядра плотность вещества достигает почти 14 г/см 3 . Все это показывает, что масса земного ядра составляет до 32 % всей массы Земли, в то время как объем примерно 16 % объема Земли. Современные специалисты считают, что земное ядро почти на 90 % представляет собой железо с примесью кислорода, серы, углерода и водорода, причем внутреннее ядро имеет, по современным представлениям, железо-никелевый состав, что полностью отвечает составу ряда исследованных метеоритов.

Мантия Земли представляет собой силикатную оболочку между ядром и подошвой литосферы. Масса мантии составляет 67,8 % общей массы Земли (О.Г. Сорохтин, 1994). Геофизическими исследованиями установлено, что мантия, в свою очередь, может быть подразделена (см. рис. 1) на верхнюю мантию (слой Д до глубины 400 км), переходный слой Голицына (слой С на глубине от 400 до 1000 км) и нижнюю мантию (слой В с подошвой на глубине примерно 2900 км). Под океанами в верхней мантии выделяется слой, в котором мантийное вещество находится в частично расплавленном состоянии. Весьма важным элементом в строении мантии является зона, подстилающая подошву литосферы. Физически она представляет собой поверхность перехода сверху вниз от охлажденных жестких пород к частично расплавленному мантийному веществу, находящемуся в пластическом состоянии и составляющему астеносферу.

По современным представлениям, мантия имеет ультраоснов-ной состав (пиролита, как смеси 75 % перидотита и 25 % толери-тового базальта или лерцолита), в связи с чем ее часто называют перидотитовой, или «каменной», оболочкой. Содержание радиоактивных элементов в мантии весьма низко. Так, в среднем 10 -8 % 13; 10~ 7 % ТЬ, 10" 6 % 40 К. Мантия в настоящее время оценивается как источник сейсмических и вулканических явлений, горообразовательных процессов, а также зона реализации магматизма.

Земная кора представляет собой верхний слой Земли, который имеет нижнюю границу, или подошву, по сейсмическим данным, по слою Мохоровичича, где отмечено скачкообразное увеличение ско^ ростей распространения упругих (сейсмических) волн до 8,2 км/с.

Для инженера-геолога земная кора является основным объектом исследований , именно на ее поверхности и в ее недрах возводятся инженерные сооружения, т. е. осуществляется строительная деятельность. В частности, для решения многих практических задач важным является выяснение процессов формирования поверхности земной коры, истории этого формирования.

В целом поверхность земной коры формируется под воздействием направленных противоположно друг другу процессов:

  • эндогенных, включающих в себя тектонические и магматические процессы, которые ведут к вертикальным перемещениям в земной коре - поднятиям и опусканиям, т. е. создают «неровности» рельефа;
  • экзогенных, вызывающих денудацию (выполаживание, выравнивание) рельефа за счет выветривания, эрозии различных видов и гравитационных сил;
  • седиментационных (осадконакопление), как «выполняющих» осадками все созданные при эндогенезе неровности.

В настоящее время выделяются два типа земной коры: «базальтовая» океаническая и «гранитная» континентальная.

Океаническая кора достаточно проста по составу и представляет собой некое трехслойное формирование. Верхний слой, мощность которого колеблется от 0,5 км в срединной части океана до 15 км у глубоководных дельт рек и материковых склонов, где накапливается практически весь терригенный материал, в то время как в других зонах океана осадочный материал представлен карбонатными осадками и бескарбонатными красными глубоководными глинами. Второй слой сложен подушечными лавами базальтов океанического типа, подстилаемый долеритовыми дайками того же состава; общая мощность этого слоя составляет 1,5-2 км. Третий слой в верхней части разреза представлен слоем габбро, который вблизи от срединных океанических хребтов подстилается серпентинитами; общая мощность третьего слоя лежит в пределах от 4,7 до 5 км.

Средняя плотность океанической коры (без осадков) равна 2,9 г/см 3 , ее масса - 6,4 10 24 г, объем осадков - 323 млн км 3 . Океаническая кора образуется в рифтовых зонах срединно-океанических хребтов за счет происходящего под ними выделения базальтовых расплавов из астеносферного слоя Земли и излияния толеритовых базальтов на океанское дно. Установлено, что ежегодно из астеносферы поступает 12 км 3 базальтов. Все эти грандиозные тектоно-магматические процессы сопровождаются повышенной сейсмичностью и не имеют себе равных на континентах.

Континентальная кора резко отличается от океанической по мощности, строению и составу. Ее мощность меняется от 20-25 км под островными дугами и участками с переходным типом коры до 80 км под молодыми складчатыми поясами Земли, например под Андами или Альпийско-Гималайским поясом. Мощность континентальной коры под древними платформами составляет в среднем 40 км. Континентальная кора сложена тремя слоями, верхний из которых осадочный, а два нижних представлены кристаллическими породами. Осадочный слой сложен глинистыми осадками и карбонатами мелководных морских бас-

сейнов и имеет весьма различную мощность от 0 на древних щитах до 15 км в краевых прогибах платформ. Под осадочным слоем залегают докембрийские «гранитные» породы, зачастую преобразованные процессами регионального метаморфизма. Далее залегает базальтовый слой. Отличием океанической коры от континентальной является наличие в последней гранитного слоя. Далее океаническая и континентальная кора подстилаются породами верхней мантии.

Земная кора имеет алюмосиликатный состав, представленный, главным образом, легкоплавкими соединениями. Из химических элементов преобладающими являются кислород (43,13 %), кремний (26 %) и алюминий (7,45 %) в форме силикатов и оксидов (табл. 2).

Таблица 2

Средний химический состав земной коры

Химический состав земной коры, %, следующий: кисло

род - 46,8; кремний - 27,3; алюминий - 8,7; железо -5,1; кальций - 3,6; натрий - 2,6; калий - 2,6; магний - 2,1; другие - 1,2.

Как показывают последние данные, состав океанической коры настолько постоянен, что его можно считать одной из глобальных констант, так же как состав атмосферного воздуха или среднюю соленость морской воды. Это является свидетельством единства механизма ее образования.

Важным обстоятельством, отличающим земную кору от других внутренних геосфер, является наличие в ней повышенного содержания долгоживущих радиоактивных изотопов урана 232 и, тория 237 ТЬ, калия 40 К, причем их наибольшая концентрация отмечена для «гранитного» слоя континентальной коры, в океанической же коре радиоактивных элементов ничтожно мало.

Р и с. 3. Блок-диаграмма трансформного разлома океанической

литосферы

Вулканы

Перемятые


Континентальная

литосфера

Магматические интрузии

Плавление

Рис. 2. Схематический разрез зоны пододвигания океанической литосферы

под континентальную

Литосфера - это оболочка Земли, объединяющая земную кору и часть верхней мантии. Характерным признаком литосферы является то, что в нее входят породы в твердом кристаллическом состоянии и она обладает жесткостью и прочностью. Вниз по разрезу от поверхности Земли наблюдается рост температуры. Расположенная под литосферой пластичная оболочка мантии - астеносфера, в которой при высоких температурах вещество частично расплавлено, и вследствие этого в отличие от литосферы астеносфера не обладает прочностью и может пластично деформироваться, вплоть до способности течь даже под действием очень малых избыточных давлений (рис. 2, 3). В свете современных представлений, согласно теории тектоники литосферных плит, установлено, что литосферные плиты, которые слагают внешнюю оболочку Земли, образуются за счет остывания и полной кристаллизации частично расплавленного вещества астеносферы, подобно тому, как это происходит, например, на реке при замерзании воды и образовании льда в морозный день.

Следует отметить, что слагающий верхнюю мантию лерцо-лит обладает сложным составом, в связи с чем вещество астеносферы, находясь в твердом состоянии, механически

ослаблено настолько, что способно проявлять ползучесть. Это показывает, что астеносфера в масштабах геологического времени ведет себя как вязкая жидкость. Таким образом, литосфера способна к движению относительно нижней мантии за счет ослабленности астеносферы. Важным фактом, подтверждающим возможность перемещения литосферных плит, является то, что астеносфера выражена глобально, хотя ее глубина, мощность и физические свойства варьируют в широких пределах. Мощность литосферы меняется от нескольких километров под рифтовыми долинами срединных океанических хребтов до 100 км под периферией океанов, а под древними щитами мощность литосферы достигает 300-350 км.

Результатом геологического развития Земли стало формирование самых верхних оболочек - атмосферы, гидросферы и литосферы. Это произошло в результате остывания поверхности Земли и привело к образованию первичной базальтовой или близкой к ней по составу коры Земли. Почти одновременно за счет конденсации водяных паров образовалась водная оболочка планеты - гидросфера.

Образование и строение литосферы. Земная кора образована горными породами, имеющими различные формы залегания. Породы лежат горизонтальными слоями или нарушены разломами и смяты складками. Залегание горных пород чаще всего обусловлено внутренними (эндогенными) силами. Строение земной коры, созданное эндогенными процессами, называется тектоническим строением, или тектоникой.

Современный рельеф планеты складывался на протяжении многих сотен миллионов лет и продолжает видоизменяться под влиянием совместного действия на ее поверхности тектонических, гидросферных, атмосферных и биологических процессов. Начало этому было положено около 3,5 млрд. лет назад, когда начали формироваться вулканические дуги. Формирование вулканических дуг происходило на первичной остаточной или вторичной коре, образованной при растяжении океанической коры над зонами подлезания (столкновения литосферных плит и подлезания их друг под друга с образованием вулканической дуги). В результате примерно 2,7-2,5 млрд. лет назад возникли значительные площади континентальной коры, которые, по-видимому, соединились в единый суперконтинент - первую Пангею в истории Земли. Толщина этой коры уже достигала современной толщины в 35-40 км. Ее нижняя часть под влиянием высоких давлений и температур испытывала значительные превращения, а на средних уровнях произошло выплавление больших масс гранита.

Следующий важный момент в развитии Земли имел место примерно 2,5 млрд. лет назад. Возникший на предыдущем этапе суперконтинент - первая Пангея - претерпел существенные изменения и 2,2 млрд. лет назад распался на отдельные, относительно небольшие континенты, разделенные бассейнами с новообразованной океанической корой. Отдельные следы этих этапов тектоники плит можно обнаружить и сейчас. Первый этап (до возникновения Пангеи) принято называть эмбриональной тектоникой плит, а второй - тектоникой малых плит. К концу второго периода, около 1,7 млрд. лет назад, континенты вновь слились в единый суперконтинент. Образовалась Пангея-Н. Ее распад начался около 1 млрд. лет назад, хотя частичные разъединения и воссоединения могли иметь место и до этого.

В интервале 1-0,6 млрд. лет назад структурный план Земли претерпел радикальные изменения и существенно приблизился к современному. С этого момента началась полномасштабная тектоника плит. Она связана с тем, что литосфера Земли разделена на ограниченное число крупных (5 тыс. км) и средних (1 тыс. км) по размерам поперечника жестких и монолитных плит, которые расположены на более пластичной и вязкой оболочке - астеносфере. Литосферные плиты стали двигаться по астеносфере в горизонтальном направлении, образуя раздвижения и подлезания, которые в среднем компенсируют друг друга в масштабах планеты. Таким образом, в истории Земли как планеты неоднократно происходил процесс формирования и распада Пангеи. Длительность таких циклов составляет 500-600 млн. лет. На эту крупномасштабную периодичность накладывается периодичность меньших масштабов, связанная с растяжением и сжатием земной коры.

В результате тектонической активности рельеф земной поверхности сегодня характеризуется глобальной асимметрией двух полушарий (Северного и Южного): одно из них представляет собой гигантское пространство, заполненное водой. Это океаны, занимающие более 70% всей поверхности. В другом полушарии сосредоточены поднятия коры, образующие континенты. Глобальная асимметрия в строении поверхности нашей планеты была замечена давно, что позволило планетарный рельеф поделить на две основные области - океаническую и континентальную. Дно океанов и континенты отличаются друг от друга строением земной коры, химическим и петрографическим составом, а также историей геологического развития. Кора имеет повышенную мощность в области континентов и пониженную в областях океанического дна.

Средняя мощность континентальной коры - 35 км. Ее верхний слой богат гранитными породами, нижний - базальтовыми магмами. На дне океанов гранитный слой отсутствует, и земная кора состоит только из базальтового слоя. Ее мощность - 5-10 км. Кроме того, континентальная кора содержит больше радиоактивных элементов, генерирующих тепло, чем тонкая океаническая кора.

Земная кора, образующая верхнюю часть литосферы, в основном состоит из восьми химических элементов: кислорода, кремния, алюминия, железа, кальция, магния, натрия и калия. Половина всей массы коры приходится на кислород, который содержится в ней в связанном состоянии, главным образом, в виде окислов металлов.

Земная кора сложена горными породами различного типа и различного происхождения. Более 70% приходится на магматические породы, 20% - на метаморфические, 9% составляют осадочные породы.

Не следует забывать и о том, что поверхность Земли сложена из литосферных плит, число и положение которых менялось от эпохи к эпохе. Плита - это вся масса земной коры и подстилающей мантии, которые движутся как единое целое по поверхности Земли. Сегодня выделяют 8-9 больших плит и более 10 малых. Плиты медленно перемещаются горизонтально (глобальная тектоника плит). В районах рифтовых долин, где вещество мантии выносится наружу, плиты расходятся, а в местах, где горизонтальные смещения соседних плит оказываются встречными, они надвигаются друг на друга. Вдоль границ литосферных плит расположены зоны повышенной тектонической активности.

При движении плит сминаются их края, образуя горные хребты или целые горные области. Океанические плиты, берущие свое начало в рифтовых разломах, наращивают толщину по мере приближения к континентам. Они уходят под островные дуги или континентальную плиту, увлекая за собой накопившиеся осадочные породы. Вещество погружающейся плиты достигает в мантии глубин до 500-700 км, где оно начинает плавиться.

© 2024 softlot.ru
Строительный портал SoftLot