Сопряжение между прямой и окружностью. Сопряжение дуг двух окружностей дугой заданного радиуса

Центр дуги сопряжения должен быть равноудален (находится на одинаковом расстоянии) от каждой из двух сопрягаемых (данных) прямых. Любая из точек сопряжения (точки входа) представляет собой пересечение перпендикуляра, опущенного из центра сопряжения на соответствующую прямую.

Алгоритм построения сопряжения двух прямых дугой заданного радиуса (рис. 13.39, а, б) следующий:

1. На расстоянии (R ), равном радиусу дуги сопряжения, проводятся две прямые, параллельные сопрягаемым прямым.

2. Определяют их точку пересечения, являющуюся центром сопряжения (О ).

3. Из точки (О ) проводят перпендикуляры к заданным прямым и находят точки сопряжения (А ) и (В ).

4. Из точки (А ) к точке (В ) строят дугу сопряжения заданного радиуса (R ).

Рисунок 13.49

Типичными примерами сопряжений являются контуры деталей, изображенных на рис. 13.40.

В AutoCAD сопряжение двух отрезков прямых (рис. ХХ а) выполняется командой «Сопрячь» (Скругление, Шпонка, Fillet) из меню «Модификация». После выбора команды следует параметром «Radius» задать радиус сопряжения (например, 10 мм), затем последовательно указателем мышки отметить оба отрезка (см. рис. ХХ б).

Current settings: Mode = TRIM, Radius = 5.0000

radius

Specify fillet radius <5.0000>: 10

Select first object or :

Select second object:

Полученный элемент состоит из двух исходных отрезков и дуги сопряжения R=10мм (см. рис. ХХ в).

Рис. ХХ а) Рис. ХХ б) Рис. ХХ в)

1.2. Сопряжение дуги окружности радиуса R и прямой а с дугой заданного радиуса R1

Для выполнения этого сопряжения (рис. 3.31) сначала определяют множество центров дуг радиуса R 1 . Для этого на расстоянии R 1 от прямой а проводят параллельную ей прямую m , а из центра О радиусом (R + R 1 ) – дуги концентрической окружности. Точка О 1 будет центром дуги сопряжения. Точка сопряжения С получена на перпендикуляре, опущенном из точки О 1 на прямую а , а точка В – на прямой, соединяющей точки О и О 1 .

Рисунок 3.31

На рис. 3.32 представлен пример изображения контура подшипника, в построении которого использован рассмотренный вид сопряжений.

Рисунок 3.32

Сопряжение прямой и окружности в AutoCAD имеет смысл при построении к окружности отрезка прямой, являющейся касательной к этой окружности. Для этого при построении отрезка начальную точку отрезка задают по координатам или объектной привязкой, конечную точку задают привязкой «Касательная» (Прыжок в тангенс) относительно окружности (работа с привязкой описана в приложении ХХХХХХХХХХХ).


1.3. Сопряжение дуг двух окружностей с радиусами R1 и R2 , дугой сопряжения радиуса R

Различают внешнее (рис. 13.42,а), внутреннее (рис. 13.42, б) и смешанное (рис. 13.42, в) сопряжения. В первом случае центр сопряжения является точкой пересечения дуги окружностей радиусов R 1 +R и R 2 +R, во втором - на пересечении окружностей радиусов R-R 1 и R-R 2 , в третьем - на пересечении дуг окружностей радиусов R+R 1 и R-R 2 . Точки сопряжения А 1 и А 2 лежат на прямых, соединяющих центр сопряжения с центром соответствующей окружности.

Рассмотрим случай внешнего сопряжения двух окружностей в AutoCAD. На рис. ХХ.а показаны две опорные окружности с радиусами R 1 и R 2 , центры которых лежат на концах пунктирной линии. Из центра окружности R 1 строят вспомогательную окружность с радиусом R 1 +R, а из центра окружности R 2 – окружность R 2 +R как это показано на рис. ХХ.б (вспомогательные окружности показаны штриховой линией). Затем из точки пересечения вспомогательных окружностей строят окружность с радиусом R (на рис. ХХ в показана штрих-пунктирной линией). Окончательные построения выполняют с помощью команды «Обрезать» из меню «Модификация». В качестве секущих объектов выбирают опорные окружности и обрезают верхнюю часть окружности R, затем удаляют вспомогательные окружности (результат построения показан на рис. ХХ.г).

Рисунок ХХ.а Рисунок ХХ.б

Рисунок ХХ.в Рисунок ХХ.г

Теперь рассмотрим случай внутреннего сопряжения двух окружностей в AutoCAD. Аналогично предыдущему случаю строят опорные окружности с радиусами R 1 и R 2 . Из центра окружности R 1 строят вспомогательную окружность с радиусом R–R 1 , а из центра окружности R 2 – окружность R–R 2 . Затем из точки пересечения вспомогательных окружностей строят окружность с радиусом R (см. рис. ХХХ.а). Лишние элементы удаляют аналогично предыдущему случаю (результат показан на рис. ХХХ.б).

Модуль: Графическое оформление чертежей.

Результат 1: Уметь оформлять форматы стандартных листов в соответствии с ГОСТ 2.303 – 68. Иметь навыки по вычерчиванию контуров деталей, уметь наносить размеры, уметь выполнять надписи в соответствии с ГОСТ 2.303 – 68.

Результат 2: Знать правила построения и иметь навыки по построению сопряжения. Уметь объяснять правила построения.

1. Правила оформления форматов, правила заполнения основной надписи в соответствии со стандартом.
2. Правила нанесения размеров, типы линий.
3. Правила выполнения надписей шрифтами в соответствии с ГОСТ 2.303 – 68.
4. Правила вычерчивания контуров технических деталей. Геометрические построения.
5. Правила вычерчивания и построение сопряжений.

Тема урока: Правила построения сопряжений.

Цели:

  • Знать определение сопряжения, типы сопряжений.
  • Уметь строить сопряжения и объяснять ход построения.
  • Развивать техническую грамотность.
  • Развивать навыки работы в группе и самостоятельной работы.
  • Воспитывать уважительное отношение к выступающему, умение слушать.

ХОД УРОКА

1. Организационно-мотивационный этап – 10 минут.

1.1. Мотивация учащихся:

  • связь с другими предметами;
  • рассмотрение деталей, геометрических тел из которых состоят детали и сопряжения между ними (плавные переходы одной лини в другую);

1.2. Деление группы на подгруппы по 5-6 человек (на четыре подгруппы).

Всем студентам группы предлагается выбрать из четырех видов геометрических фигур одну на выбор, после того, как выбор сделан, студенты объединяются в подгруппы, для самостоятельной работы в подгруппах.
Студентам сообщается, какую тему им предстоит изучить, познакомиться с правилами построения сопряжений, которые помогут им понять, как строятся плавные переходы (сопряжения). Каждой группе предлагается изучить и представить один из видов сопряжения (преподаватель каждому раздает материал по теме занятия по разделам).

2. Организация самостоятельной деятельности учащихся по теме урока 25 минут.

2.1. Понятие сопряжения.
2.2. Общий алгоритм построения сопряжений.
2.3. Виды сопряжения. Правила их построения.
2.3.1. Сопряжение между двух прямых.
2.3.2. Сопряжение внутреннее и внешнее между прямой и дугой окружности.
2.3.3. Сопряжение внутренне и внешнее между двух дуг окружностей.
2.3.4. Смешанное сопряжение.
3. Подведение итогов, доклады групп по теме после самостоятельной работы в подгруппах- 25 минут.
4. Проверка степени усвоения материала – 10 минут.
5. Заполнение дневников (о проведенном занятии) – 5 минут.
6. Оценка деятельности учащихся.

Сопряжение – это плавный переход одной линии в другую.



3. Построить сопряжение (плавный переход одной линии в другую)
2. 3.1. Построение сопряжения двух сторон угла окружности заданного радиуса.

Сопряжение двух сторон угла (острого и тупого) дугой заданного радиуса R выполняют следующим образом:

Параллельно сторонам угла на расстоянии, равном радиусу дуги R, проводят две вспомогательные прямые линии. Точка пересечения этих прямых (точка О) будет центром дуги радиуса R, т.е центром сопряжения. Из точки О описывают дугу, плавно переходящую в прямые – стороны угла. Дугу заканчивают в точках сопряжения n и n1, которые являются основаниями перпендикуляров, опущенных из центра О на стороны угла. При построении сопряжения сторон прямого угла центр дуги сопряжения проще находить с помощью циркуля. Из вершины угла А проводят дугу радиусом R до взаимного пересечения в точке О, являющейся центром сопряжения. Из центра О описывают дугу сопряжения. Построение сопряжения двух сторон угла показано на рис.1.

Общий алгоритм построения сопряжения:

1. Необходимо найти точку сопряжения.
2. Необходимо найти точки сопряжения.
3. Построение сопряжения (плавного перехода одной линии в другую).
2.3.2 Построение внутреннего и внешнего сопряжения между прямой и дугой окружности.

Сопряжение прямой с дугой окружности может быть выполнено при помощи дуги с внутренним касанием дуги и внешним касанием. На рисунке 2(а, б) показано сопряжение дуги окружности радиусом Rи прямой линии АВ дугой окружности радиуса r с внешним касанием. Для построения такого сопряжения проводят окружность радиуса R и прямую АВ. Параллельно заданной прямой на расстоянии, равному радиусу r (радиус сопрягающей дуги), проводят прямую ab. Из центра О проводят дугу окружности радиусом, равным сумме радиусов R и r, до пересечения ее с прямой ab в точке О1. Точка О1 является центром дуги сопряжения. Точку сопряжения с находят на пересечении прямой ОО1 с дугой окружности радиуса R. Точка сопряжения О1 на данную прямую АВ. При помощи аналогичных построений могут быть найдены точки О2, с2, с3. На рисунке 2(а, б) показан кронштейн, при вычерчивании которого необходимо выполнить построения, описанные выше.

При вычерчивании маховика, выполнено сопряжение дуги радиуса R с прямой АВ дугой радиуса r с внутренним касанием. Центр дуги сопряжения О1 находится на пересечении вспомогательной прямой, проведенной параллельно данной прямой на расстоянии r, с дугой вспомогательной окружности, описанной из центра О радиусом, равным разности R-r. Точка сопряжения с 1 является основанием перпендикуляра, опущенного из точки О1 на данную прямую. Точку сопряжения с находят на пересечении прямой ОО1 с сопрягаемой дугой. Пример построения сопряжения прямой с дугой окружности показан на рисунке 3.

Сопряжение – это плавный переход одной лини в другую.

Общий алгоритм построения сопряжения:

1. Необходимо найти центр сопряжения.
2. Необходимо найти точки сопряжения.
3. Построение линии сопряжения (плавного перехода одной лини в другую).

2.3.3. Построение сопряжения между двух дуг окружностей.

Сопряжение двух дуг окружностей может быть внутреннее и внешнее.
При внутреннем сопряжении центры О и О1 сопрягаемых дуг находятся внутри сопрягающей дуги радиуса R. При внешнем сопряжении центры О и О1 сопрягаемых дуг радиусов R1 и R2 находятся вне сопрягающей дуги радиуса R.
Построение внешнего сопряжения:

а) радиусы сопрягаемых окружностей R и R1;

Требуется:



Показано на рисунке 4(б) . По заданным расстояниям между центрами на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R и R1. Из центра О1 проводят вспомогательную дугу окружности радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой дуги R2, а из центра О – радиусом, равным разности радиусов сопрягающей дуги R и сопрягаемой дуги R1. Вспомогательные дуги пересекутся в точке О2, которая и будет искомым центром сопрягающей дуги. Для нахождения точек пересечения продолжения прямых О2О и О2О1 с сопрягаемыми дугами являются искомыми точками сопряжения (точки s и s1).

Построение внутреннего сопряжения:

а) радиусы R и R1 сопрягаемых дуг окружностей;
б) расстояния между центрами этих дуг;
в) радиус R сопрягающей дуги;

Требуется:

а) определить положение О2 сопрягающей дуги;
б) найти точки сопряжения s и s1;
в) провести дугу сопряжения;

Построение внешнего сопряжения показано на рисунке 4(в). По заданным расстояниям на чертеже находят точки О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R2 и сопрягающей R. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги. Для нахождения точек сопряжения центры дуг соединяют прямыми линиями ОО2 и О1О2. Эти две прямые пересекают сопрягаемые дуги в точках сопряжения s и s1. Из центра О2 радиусом Rпроводят сопрягающую дугу, ограничивая ее точками S и S1.

2.3.4. Построение смешанного сопряжения.

Пример смешанного сопряжения показан на рисунке 5.

а) Заданы радиусы R и R1 сопрягаемых дуг сопряжения;
б) расстояния между центрами этих дуг;
в) радиус R сопрягающей дуги;

Требуется:

а) определить положение центра О2 сопрягающей дуги;
б) найти точки сопряжения s и s1;
в) провести дугу сопряжения;

По заданным расстояниям между центрами на чертеже намечают центры О и О1, из которых описывают сопрягаемые дуги радиусов R1 и R2. Из центра О проводят вспомогательную дугу окружности радиусом, равным сумме радиусов сопрягаемой дуги R1 и сопрягающей R, а из центра О1 – радиусом, равным разности радиусов R и R2. Вспомогательные дуги пересекутся в точке О2, которая будет искомым центром сопрягающей дуги. Соединив точки О и О2 прямой, получают точку сопряжения s1; соединив точки О1 и О2, находят точку сопряжения s. Из центра О2 проводят дугу сопряжения от s до s1. На рисунке 5 показан пример построения смешанного сопряжения.

3. Подведение итогов самостоятельной работы студентов в группах. Доклады студентов по каждому разделу темы занятия у доски.
4. Проверка степени усвоения знаний учащихся. Студенты каждой из групп задают вопросы студентам другой группы.
5. Заполнение дневников. Каждому студенту по итогам занятия предлагается заполнить дневник.

Для того чтобы получить хороший объем знаний, важно зафиксировать, насколько успешно прошло занятие. Этот дневник дает возможность записывать в течение занятия каждую деталь вашей работы при изучении модуля. Если вы довольны, удовлетворены, разочарованы тем, как пошло ваше занятие, то отметьте ваше отношение к элементам урока в соответствующей клетке анкеты.

Элементы урока

Довольны

Удовлетворены

Разочарованы

Урок № 23.

Сопряжения

Показать несколько деталей, имеющих скругления.

Рассматривая детали, видим, что в их конструкции часто одна поверхность переходит в другую. Обычно эти переходы делают плавными, что повышает прочность деталей и делает их более удобными в работе.

На чертеже поверхности изображаются линиями, которые также плавно переходят одна в другую.

Такой плавный переход одной линии (поверхности) в другую линию (поверхность) называют сопряжением.

При построении сопряжения необходимо определить границу, где кончается одна линия и начинается другая, т.е. найти на чертеже точку перехода, которая называется точкой сопряжения или точкой касания .

Задачи на сопряжения условно можно разделить на 3 группы.

Первая группа задач включает в себя задачи на построение сопряжений, где участвуют прямые линии. Это может быть непосредственное касание прямой и окружности, сопряжение двух прямых дугой заданного радиуса, а также проведение касательной прямой к двум окружностям.

Построим окружность, касательную к прямой.

Построение окружности, касательной к прямой , связано с нахождением точки касания и центра окружности.

Задана горизонтальная прямая АВ , требуется построить окружность радиусом R , касательную к данной прямой (рис. 1).


Точка касания выбирается произвольно.

Так как точка касания не задана, то окружность радиуса R может коснуться данной прямой в любой точке. Таких окружностей можно провести множество. Центры этих окружностей (О 1 , О 2 и т.д.) будут находиться на одинаковом расстоянии от заданной прямой, т.е. на линии, расположенной параллельно заданной прямой АВ на расстоянии, равном радиусу заданной окружности (рис. 1). Назовем эту линию линией центров .

Проведем линию центров параллельно прямой АВ на расстоянии R . Так как центр касательной окружности не задан, возьмем любую точку на линии центров, например, точку О.

Прежде чем проводить касательную окружность, следует определить точку касания. Точка касания будет лежать на перпендикуляре, опущенном из точки О на прямую АВ . В пересечении перпендикуляра с прямой АВ получим точку К, которая будет точкой касания. Из центра О радиусом R от точки К проведем окружность. Задача решена.

Запишите в свои тетради в клетку следующие правила:

Если в сопряжении участвует прямая линия, то:

1)

центр окружности, касательной к прямой, лежит на прямой (линия центров), проведенной параллельно заданной прямой, на расстоянии, равном радиусу данной окружности;

2) точка касания лежит на перпендикуляре, проведенном из центра окружности к заданной прямой.

Сопряжение двух прямых.

На плоскости две прямые могут располагаться параллельно или под углом друг к другу.

Чтобы построить сопряжение двух прямых, необходимо провести окружность, касательную к этим двум прямым.

Откройте рабочие тетради на странице 31.

Рассмотрим сопряжение двух непараллельных прямых.

Две непараллельные прямые располагаются друг к другу под углом, который может быть прямым, тупым или острым. При выполнении чертежей деталей часто такие углы необходимо скруглить дугой заданного радиуса (рис.1). Скругление углов на чертеже есть не что иное, как сопряжение двух непараллельных прямых дугой окружности заданного радиуса. Для выполнения сопряжения необходимо найти центр дуги сопряжения и точки сопряжения.

Известно, что если в сопряжении участвует прямая линия, то центр дуги сопряжения находится на линии центров, которая проводится параллельно заданной прямой на расстоянии, равном радиусу R дуги сопряжения.

Поскольку угол образован двумя прямыми, то проводят две линии центров параллельно каждой прямой на расстоянии, равном радиусу R дуги сопряжения. Точка их пересечения будет центром дуги сопряжения.


Для нахождения точек сопряжения из точки О опускают перпендикуляры на заданные прямые и получают точки сопряжения К и К 1 . Зная точки и центр сопряжения, из точки О радиусом R проводят дугу сопряжения. При обводке чертежа следует сначала обвести дугу, а затем касательные прямые.

При построении сопряжения прямого угла упрощается проведение линии центров, так как стороны угла взаимно перпендикулярны. От вершины угла откладывают отрезки, равные радиусу R дуги сопряжения, и через полученные точки К и К 1 , которые будут точками касания, проводят две линии центров, параллельные сторонам угла. Они будут являться одновременно и линиями центров, и перпендикулярами, определяющими точки сопряжения К и К 1 (стр. 31, рис.1).

Стр. 31, задание 4. Сопряжение двух параллельных прямых.

Чтобы построить сопряжение двух параллельных прямых, необходимо провести дугу окружности, касательной к этим прямым (рис.3).



Рис.3

Радиус этой окружности будет равен половине расстояния между заданными прямыми. Так как точка касания не задана, подобных окружностей можно провести множество. Центры их будут находиться на прямой, проведенной параллельно заданным прямым на расстоянии, равном половине расстояния между ними. Эта прямая будет линией центров.

Точки касания (К 1 и К 2 ) лежат на перпендикуляре, опущенном из центра касательной окружности на заданные прямые (рис. 3а). Так как центр касательной окружности не задан, перпендикуляр проводится произвольно. Отрезок КК 1 делят пополам (рис.3б), проводят через точки пересечения засечек прямую линию параллельно заданным прямым, на которой будут располагаться центры окружностей, касательных к заданным параллельным прямым, т.е. эта линия будет линией центров. Поставив ножку циркуля в точку О , проводят дугу сопряжения (рис. 3в) от точки К до точки К 1 .

Построение прямых, касательных к окружностям

(Р.Т. стр.33).

Задание 1 . Проведите прямую, касательную к окружности через точку А , лежащую на окружности.

Из точки О проводим прямую OB через точку А . Из точки А любым радиусом проводим окружность. При пересечении с прямой получили точки 1 и 2. Из этих точек любым радиусом проводим дуги до пересечения между собой в точках C и D . Из точки C или D проводим прямую через точку А .

Она и будет касательной к окружности, так как касательная всегда перпендикулярна радиусу, проведенному в точку касания.

Задание 2 .

Это построение аналогично построению перпендикуляра к прямой через заданную точку, которое можно выполнить с помощью двух угольников.

Сначала угольник 1 кладется так, чтобы его гипотенуза совпадала с точками O и A . Затем к угольнику 1 прикладывается угольник 2 , который будет направляющим, т.е. по которому будет сдвигаться угольник 1 . Потом угольник 1 приставляем другим катетом к угольнику 2. Затем катаем угольник 1 по угольнику 2 до тех пор, пока гипотенуза не совпадет с точкой A . И проводим прямую, касательную к окружности через точку A .

Задание 3 . Проведите прямую, касательную к окружности через точку, не лежащую на этой окружности.

Даны окружность радиусом R и точка А , не лежащая на окружности, требуется провести из точки А прямую, касательную к данной окружности в верхней ее части. Для этого необходимо найти точку касания. Мы знаем, что точка касания лежит на перпендикуляре, проведенном из центра окружности к касательной прямой. Следовательно, касательная и перпендикуляр образуют прямой угол.

Зная, что всякий угол, вписанный в окружность и опирающийся на ее диаметр, является прямым, соединив точки А и О , принимают отрезок АО за диаметр описанной окружности. В пересечении описанной окружности и окружности радиуса R будет находиться вершина прямого угла (точка К ). Отрезок АО делим пополам при помощи циркуля, получаем точку О 1 (рис.4, б).

Из центра О 1 радиусом, равным отрезку АО 1 , проводим окружность, получаем точки К и К 1 в пересечении с окружностью радиуса R (рис.4 ,в).

Так как нужно провести только одну касательную к верхней части окружности, выбирают нужную точку касания. Этой точкой будет точка К . Точку К соединяем с точками А и О , получаем прямой угол, который опирается на диаметр АО описанной окружности радиусом R 1 . Точка К – вершина этого угла (рис.4, г), отрезки ОК и АК – стороны прямого угла, следовательно, точка К будет искомой точкой касания, а прямая АК – искомой касательной.

Рис.4

Проведение прямой, касательной к двум окружностям.

Даны две окружности радиусами R и R 1 , требуется построить касательную к ним. Возможны два случая касания: внешнее и внутреннее.

При внешнем касании касательная прямая находится с одной стороны от окружностей и не пересекает отрезок, соединяющий центры данных окружностей.

При внутреннем касании касательная прямая находится с разных сторон от окружностей и пересекает отрезок, соединяющий центры окружностей.

Стр. 33. Задание 5 . Проведите прямую, касательную к двум окружностям. Касание внешнее.

Прежде всего необходимо найти точки касания. Известно, что они должны лежать на перпендикулярах, проведенных из центров окружностей (О и О 1 ) к касательной.

Из точки О проводим окружность радиусом R - R 1 ,так как касание внешнее.

Разделим расстояние ОО 1 пополам и проведем окружность радиусом R =ОО 2 1 О 2

Эта окружность пересекает окружность с радиусом R - R 1 в точке К. Соединяем эту точку с О 1 .

Из точки О через точку К проводим прямую до пересечения с окружностью радиусом R . Получили точку К 1 – первую точку касания.

Из точки О 1 проводим прямую, параллельную КК 1 , до пересечения с окружностью радиусом R 1 . Получили вторую точку касания К 2 . Соединяем точки К 1 и К 2 . Это и есть касательная к двум окружностям.

Задание 6 . Проведите прямую, касательную к двум окружностям. Касание внутреннее.

Построение аналогичное, только при внутреннем касании радиус вспомогательной окружности, проводящейся из точки О равен сумме радиусов окружностей R + R 1 .

Вторая группа задач на сопряжения включает в себя задачи, в которых участвуют только окружности и дуги. Плавный переход одной окружности в другую может происходить или непосредственно касанием, или через третий элемент – дугу окружности.

Касание двух окружностей может быть внешним (РТ: стр.32, рис.3) или внутренним (РТ: стр.32, рис.4).

Задание 3 (стр. 32)

При внешнем касании двух окружностей расстояние между центрами этих окружностей будет равно сумме их радиусов.

Из точки О радиусом R + R C проведем дугу. Из точки О 1 радиусом R 1 + R C О С - центр сопряжения.

Соединяем точки О и О 1 с центром сопряжения О С . На окружностях получили точки касания (сопряжения).

Из точки О С радиусом сопряжения R C 30 соединяем точки касания.

Задание 4 (стр. 32)

При внутреннем касании двух окружностей одна из касательных окружностей находится внутри другой окружности, и расстояние между центрами этих окружностей будет равно разности их радиусов.

Из точки О радиусом (R C R ) проведем дугу. Из точки О 1 радиусом (R C R 1 ) проведем дугу до пересечения с первой дугой. Получили точку О С - центр сопряжения.

Центр сопряжения О С соединяем с точками О и О 1 с и продлеваем прямую дальше.

На окружностях получили точки касания (сопряжения).

Из точки О С радиусом сопряжения R C 60 соединяем точки касания.

Третья группа задач на сопряжения включает в себя задачи на сопряжения прямой и дуги окружности дугой заданного радиуса.

Выполняя такое задание, решают как бы две задачи: проведение касательной дуги к прямой и касательной дуги к окружности. Касание в этом случае может быть как внешним, так и внутренним.

РТ: стр. 32. Задание 1. Сопряжение окружности и прямой. Касание внешнее. R C 20 .

Заданы прямая и окружность радиусом R , требуется построить сопряжение дугой радиуса R C 20 .

Так как в сопряжении участвует прямая линия, то центр дуги сопряжения находится на прямой, проведенной параллельно заданной прямой на расстоянии, равном радиусу сопряжения R C 20 . Поэтому параллельно заданной прямой на расстоянии 20 мм проводим еще одну прямую.

А центр дуги сопряжения при внешнем касании двух окружностей находится на окружности радиуса, равного сумме радиусов R и R C . Поэтому из точки О радиусом (R + R C О С

Затем находим точки касания. Первая точка касания - это перпендикуляр, опущенный из центра сопряжения на заданную прямую. Вторую точку сопряжения находим, соединив центр сопряжения О С и центр окружности R . Точка касания будет лежат на первом пересечении с окружностью, так как касание внешнее.

Затем из точки О С радиусом R C 20 соединяем точки сопряжения.

РТ: стр. 32. Задание 2. Сопряжение окружности и прямой. Касание внутреннее. R C 60 .

Параллельно заданной прямой проводим линию центров на расстоянии 60 мм. Из точки О радиусом (R с - R ) проводим дугу до пересечения с новой прямой (линией центров). Получим точку О С , которая является центром сопряжения.

Из О С проводим прямую через центр окружности точку О и перпендикуляр на заданную прямую. Получаем две точки касания. И затем из центра сопряжения радиусом 60 мм соединяем точки касания.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4

ТЕМА: СОПРЯЖЕНИЕ ПРЯМЫХ И ОКРУЖНОСТЕЙ

СОПРЯЖЕНИЯ, ПРИМЕНЯЕМЫЕ В КОНТУРАХ ТЕХНИЧЕСКИХ ДЕТАЛЕЙ

Сопряжением называется плавный переход одной линии в другую.

Точка, в которой одна линия переходит в другую, называется точкой сопряжения.

Дуги, при помощи которых осуществляется плавный переход одной линии в другую, называются дугами сопряжений.

Касательной называется прямая, имеющая с замкнутой кривой только одну общую точку. Это предельное положение секущей, точки пересечения которой с кривой, стремясь друг к другу, сливаются в одну точку - точку касания.

Построение сопряжений основано на свойствах касательных к кривым и сводится к определению положения центра сопрягающей дуги и точек сопряжения (касания), т.е. точек, в которых заданные линии переходят в сопрягающую дугу

СОПРЯЖЕНИЕ УГЛОВ (СОПРЯЖЕНИЕ ПЕРЕСЕКАЮЩИХСЯ ПРЯМЫХ)

Сопряжение прямого угла

(Сопряжение пересекающихся прямых под прямым углом)

В данном примере будет рассмотрено построение сопряжения прямого угла заданным радиусом сопряжения R. Первым делом найдём точки сопряжения. Для нахождения точек сопряжения, нужно поставить циркуль в вершину прямого угла и провести дугу радиусом R до пересечения со сторонами угла. Полученные точки и будут являться точками сопряжения. Далее нужно найти центр сопряжения. Центром сопряжения будет точка равноудалённая от сторон угла. Проведём из точек a и b две дуги радиусом сопряжения R до пересечения друг с другом. Полученная на пересечении точка О и будет центром сопряжения. Теперь из центра сопряжения точки О описываем дугу радиусом сопряжения R от точки a до точки b. Сопряжение прямого угла построено.

Сопряжение острого угла

(Сопряжение пересекающихся прямых под острым углом).

Ещё один пример сопряжения угла. В этом примере будет построено сопряжение острого угла. Для построения сопряжения острого угла раствором циркуля, равным радиусу сопряжения R, проведём из двух произвольных точек на каждой стороне угла по две дуги. Затем проведём касательные к дугам до пересечения в точке О, центре сопряжения. Из полученного центра сопряжения опустим перпендикуляр к каждой из сторон угла. Так мы получим точки сопряжения a и b. Затем проведём из центра сопряжения, точки О, дугу радиусом сопряжения R, соединив точки сопряжения a и b. Сопряжение острого угла построено.



Сопряжение тупого угла

(Сопряжение пересекающихся прямых под тупым углом)

Сопряжение тупого угла строится по аналогии с сопряжением острого угла. Мы также, сначала радиусом сопряжения R проводим по две дуги из двух произвольно взятых точек на каждой из сторон, а затем проводим касательные к этим дугам до пересечения в точке О, центре сопряжения. Затем опускаем перпендикуляры из центра сопряжения к каждой из сторон и соединяем дугой, равной радиусу сопряжения тупого угла R, полученные точки a и b.


      Для грамотного и уверенного построения чертежей и изготовления графических дизайнерских работ, дизайнеру следует знать основные законы геометрических построений. Приводимые ниже примеры легко освоить на практике, применяя для построений циркуль и линейку или (на компьютере) любой векторный графический редактор.
Деление угла пополам
Из вершины А данного угла, как из центра провести дугу произвольного радиуса R, которая пересечет стороны угла в точках C,B (Шаг 1).
Из точки B, как из центра тем же радиусом R провести дугу (Шаг 2).

Из точки С, как из центра тем же радиусом R провести дугу до пересечения в точке D (Шаг 3).
Прямая, соединяющая точки A и D - искомая биссектриса (Шаг 4).

Деление прямого угла на 3 равные части
Из вершины прямого угла А, как из центра, следует провести дугу BC, произвольного радиуса R (Шаг 1).
Из точки B, как из центра, провести дугу, тем же радиусом R, до пересечения с дугой BC в точке D (Шаг 2).

Из точки C, как из центра, провести дугу, тем же радиусом R, до пересечения с дугой BC в точке E (Шаг 3).
Из точки А провести линии AD и AE (Шаг 4), которые и делят прямой угол BAC на три равных между собой угла BAE, EAD и DAC. Деление дуги окружности пополам
Из концов дуги АВ следует провести дуги радиусом R большим либо равным 1/2 длинны хорды АВ, которые пересекаются в точках M и N (Шаг 1).
Прямая, проведенная через точки M и N делит дугу и ее хорду АВ пополам и проходит через ее центр О (Шаг 2).
Деление окружностей. Построение квадрата.
Первый способ построения (Рис. 1). Проводим в окружности вертикальный и горизонтальный диаметры (Шаг 1).
Точки пересечения этих диаметров с окружностью являются вершинами квадрата (Шаг 2).

Второй способ построения (Рис. 2). Как и в первом способе проводим в окружности вертикальный и горизонтальный диаметры. Из точек пересечения диаметров с окружностью строим дуги с радиусом R, равным радиусу окружности (Шаг 1).
Точки пересечения дуг EG и FH соединяем соответственно линиями (Шаг 2). Точки пересечения этих линий с окружностью и являются вершинами квадрата.
Деление окружностей. Построение правильного шестиугольника.
В окружности радиуса R следует провести вертикальный диаметр (Шаг 1).
Из нижней точки пересечения диаметра с окружностью, как из центра следует провести дугу радиусом R (Шаг 2).

Аналогично, из верхней точки пересечения диаметра с окружностью следует провести дугу радиусом R (Шаг 3).
Соединяем все точки пересечения на окружности и в итоге получаем правильный шестиугольник (Шаг 4).

Деление окружностей. Построение равностороннего треугольника.
В окружности радиуса R (Шаг 1) следует провести вертикальный диаметр.
Из нижней точки пересечения диаметра с окружностью, как из центра, тем же радиусом R следует провести дугу до пересечения с окружностью в точках C и B (Шаг 2).

Точки A,B и C на окружности являются вершинами равностороннего треугольника (Шаг 3).

Деление окружностей. Построение правильного пятиугольника.
Провести в окружности радиусом R два перпендикулярных диаметра (Шаг 1).
Из точек A и B , как из центра, следует провести две дуги радиусом R, до пересечения с окружностью (Шаг 2).

Длинна отрезков CE = CF = L является длинной стороны правильного пятиугольника. Четырьмя дугами радиусом L следует сделать засечки на окружности (Шаг 3).
Точка С и точки пересечения дуг с окружностью являются вершинами правильного пятиугольника (Шаг 4).

Деление окружностей. Построение правильного семиугольника.
Сторона правильного семиугольника приближенно равна 1/2 стороны правильного треугольника. Поэтому сначала следует построить основание правильного треугольника (Шаг 1).
Основание правильного треугольника AB делится пополам в точке С вертикальным диаметром окружности (Шаг 2). Длинна отрезка z = AC является длиной стороны правильного семиугольника.

Радиусом дуги равным z следует сделать на окружности засечки, как показано на рисунке (Шаг 3). Построения лучше начинать из верхней точки D.
Из точки D, последовательно следует соединить все точки пересечения дуг с окружностью. В итоге получаем правильный семиугольник (Шаг 4).

Сопряжения. Точка сопряжения.
Сопряжением называется такое соединение двух линий, при котором обеспечивается плавный переход одной линии в другую. Точка плавного перехода называется точкой сопряжения.

В точке сопряжения N прямой и окружности прямая является касательной к окружности. Две окружности в точке сопряжения имеют общую касательную. Точка сопряжения и центры касающихся окружностей лежат на одной прямой - точки O1, N1, O или точки O, O2, N2.

Сопряжение двух параллельных прямых дугой полуокружности.
Проведем прямую 3, перпендикулярную параллельным прямым 1 и 2 (Шаг 1).
Делим отрезок AB пополам (Шаг 2).

Проводим дугу полуокружности радиуса R = AO = OB, которая плавно соединяет данные параллельные прямые (Шаг 3).

Скругление прямого угла дугой радиуса R
Дан прямой угол и радиус дуги R (Шаг 1).
Из вершины угла, как из центра, проводим дугу данного радиуса R, которая пересекает стороны угла в точках B и C (Шаг 2).

Из точек В и С, как из центров, проводим дуги радиуса R до их пересечения в точке D (Шаг 3).
Дуга радиуса DB = R, проведенная между точками С и В, скругляет данный прямой угол (Шаг 4).

Скругление острого угла дугой радиуса R
Дан острый угол между прямыми 1 и 2 и радиус дуги R (Шаг 1).
Проведем прямые 3 и 4, соответственно параллельные сторонам 1 и 2 угла, на расстоянии R от них (Шаг 2).

Опустим перпендикуляры из точки О на стороны угла (Шаг 3).
Основания перпендикуляров В и С - это точки сопряжения. Проведем дугу ВС радиуса ОВ = R, которая скругляет данный угол (Шаг 4).

Сопряжение двух окружностей дугой данного радиуса R (1-й случай)
Проведем радиусами R1+R и R2+R две дуги 1 и 2, концентрические данным окружностям (Шаг 1).
Пересечение дуг 1 и 2 определяет центр сопряжения О. Проведем прямые ОО1 и ОО2, пересекающие данные окружности в точках сопряжения А1 и А2 (Шаг 2).

Из центра О радиусом ОА1 проведем дугу А1А2 (Шаг 3), которая плавно соединяет данные окружности.

Сопряжение двух окружностей дугой данного радиуса R (2-й случай)
Проведем радиусами R1-R и R2+R две дуги 1 и 2, концентрические данным окружностям. Пересечение дуг 1 и 2 определяет центр сопряжения О. Проведем прямые ОО1 и ОО2, пересекающие данные окружности в точках сопряжения А1 и А2 (Шаг 1).

Из центра О радиусом ОА1 проведем дугу А1А2, которая плавно соединяет данные окружности (Шаг 2).

Сопряжение прямой и окружности радиуса R дугой данного радиуса r (1-й случай)
Проведем прямую 3 параллельно прямой 1 на расстоянии r от нее и из центра О дугу 2 радиусом R+r (Шаг 1).


Проводим дугу АВ из центра О1 радиусом r, которая плавно соединяет прямую 1 и окружность радиуса R (Шаг 3).

Сопряжение прямой и окружности радиуса R дугой данного радиуса r (2-й случай r > R)
Проведем прямую 3 параллельно прямой 1 на расстоянии r от нее и из центра О дугу 2 радиусом r - R (Шаг 1).
Точка О1 пересечения дуги 2 и прямой 3 есть центр дуги радиуса r. Определим точки сопряжения А и В, опустив перпендикуляр из О1 на прямую 1 и соединив центры О и О1(Шаг 2).

Проводим дугу АВ из центра О1 радиусом r, которая плавно соединяет прямую 1 и окружность радиуса R (Шаг 3).

© 2024 softlot.ru
Строительный портал SoftLot